1、大米加工生产线集中控制系统的设计1第 1 章 绪论随着国民经济和国防建设的发展,自动控制技术的应用日益广泛,其重要作用也越来越显著。而生产过程自动控制是自动控制技术在石油、化工、电力、冶金、机械、轻工、纺织等生产过程的具体应用,是自动化技术的重要组成部分。PLC 于 20 世纪60 年代末期在美国首先出现,目的是用来取代继电器,执行逻辑、计时、计数等顺序控制功能,建立柔性程序控制系统。1976 年正式命名,并给予定义:PLC(Programmable logic Controller)是一种数字控制专用电子计算机,它使用了可编程序存储器储存指令,执行诸如逻辑、顺序、计时、计数与演算等功能,并通
2、过模拟和数字输入、输出等组件,控制各种机械或工作程序。随着工业自动化水平的迅速提高,计算机在工业领域的广泛应用,人们对工业自动化的要求越来越高,种类繁多的控制设备和过程监控装置在工业领域的应用,使得传统的工业控制软件已无法满足用户的各种需求。本次设计的大米加工生产线控制系统是以 PLC 为核心控制器,并结合昆仑组态软件 MCGS,辅以光电传感器,继电器等实现的可远程控制的集成系统。它能够很好地解决传统工业控制软件存在的种种问题,使用户能根据自己的控制对象和控制目的任意组态,完成最终的自动化控制工程。1.1 本课题研究的目的、意义现代自动控制越来越朝着智能化发展,在很多自动控制系统中都用到了工控
3、机,小型机、甚至是巨型机处理机等,当然这些处理机有一个很大的特点,那就是很高的运行速度,很大的内存,大量的数据存储器。但随之而来的是巨额的成本。在很多的小型系统中,处理机的成本占系统成本的比例高达 20%,而对于这些小型的系统来说,配置一个如此高速的处理机没有任何必要,因为这些小系统追求经济效益,而不是最在乎系统的快速性,所以用可编程序逻辑控制器(PLC) 1控制小型的,而又不是很复杂,不需要大量复杂运算的系统中是非常适合的。本论文是对现在大量使用的大米生产线控制系统进行自动化设计改造。现有的控制系统很大部分是采用老式的继电器触点控制,系统故障率高,工人劳动强度大,系大米加工生产线集中控制系统
4、的设计2统设备升级困难。大米生产过程中,如果系统控制不当,则会出现杂质、碎米率大、加工精度不易控制等问题。为了提高系统的自动化水平,解决大米生产中产生的这些问题,利用现代化的 PLC 与 MCGS 组态结合的集中控制技术,在一定程度上能够提高劳动生产率,改善劳动条件,克服人为的不稳定因素,为现代化的生产管理提供强有力的物质条件,以达到系统自动化控制和系统升级的目的。1.2 PLC 的简介可编程序控制器(Programmable Logic Controller )简称 PLC, 是一种以微处理器为核心的用于工程自动控制的工业控制机,其本质是一台工业控制专用计算机 2。PLC是一种专为在工业环境
5、应用而设计的数字运算电子系统,它是以微处理机为基础,综合了计算机技术、自动控制技术和通信技术等现代科技而发展起来的一种新型工业自动控制装置,是当今工业发达国家自动控制的标准设备之一。1.2.1 PLC 的特点及应用可编程序控制器(PLC )得以迅速发展和广泛使用的原因是由于它具有继电接触器控制装置和通用计算机以及其他控制系统所不具备的特点:1运行稳定、可靠性高、抗干扰能力强 2设计、使用和维护方便3编程语言直观易学4与网络技术相结合 5体积小、质量轻、能耗低 3可编程控制器所具有的功能,使它既可用于开关量控制,又可用于模拟量控制;既可用于单机控制,又可用于组成多级控制系统;既可控制简单系统,又
6、可控制复杂系统。它的应用可大致归纳为如下几类:逻辑控制、运动控制、过程控制、数据处理、多级控制。大米加工生产线集中控制系统的设计31.3 论文主要研究内容本篇论文主要论述了如何用三菱 FX-2N 系列 PLC 设计大米加工生产线集中控制系统。从而实现系统所需要的各项功能,满足设计要求。本文研究内容主要是以 PLC控制整个生产过程,其内容有以下几个方面:1接通电源开关后,将设备模式旋转到自动定量输送物料模式,将所有阀门旋转到关闭位置;2按下启动按钮,利用真空泵把原料吸进吸料漏斗内。由吸料漏斗落入预量漏斗,再由预量漏斗落入称量漏斗。通过称重传感器实现自动称量控制;3原料由称量漏斗进入砻谷缸,当原料
7、达到砻谷缸设定的位置时,关闭进料阀门开始砻谷,砻谷后,启动鼓风机,进行谷糙分离,分离时,糙米预存缸的进料阀门打开;4谷糙分离完毕后,糙米预存缸内开始进行碾米,碾米结束后,起动振动电机筛选碾好的大米,利用鼓风机与高压空气推出大米,通过高压输管送入料笼。1.4 论文组成对大米加工生产线集中控制系统的设计论文主要从机械和电气两方面进行设计和说明。第一章讲述的是课题研究意义和目的以及简单地介绍了以下 PLC 的有关内容如:PLC 特点、PLC 的应用和发展趋势、 PLC 的结构、 PLC 的工作方式等等。第二章讲述系统概述及控制方案设计,包括制系统设计目标控制系统设计内容,大米加工生产线集中控制系统方
8、案选择论证。第三章是本次论文设计的核心部分之一:控制系统的硬件设计。它包括了控制系统分析及元件选择, PLC 控制系统 I/O 点数的估算,PLC 及主要模块的选型控制系统的 I/O 地址分配,控制系统电路设计。第四章讲述的是软件设计。包括 PLC 控制系统梯形图,PLC 控制系统程序的编制方法选择,主要模块程序设计和模拟量输入的算法设计。第五章讲述的是监控界面的设计。包括系统操作界面,系统参数界面,报表界面,大米加工生产线集中控制系统的设计4也是本设计的核心控制部分。大米加工生产线集中控制系统的设计5第 2 章 控制系统方案设计随着我国工业自动化水平的不断提高,对大米加工生产线集中控制系统的
9、自动化程度也提出了更高的要求。传统的大米加工生产线多采用继电器 8控制电路实现控制要求,机械触点多,可靠性差,控制设备体积大。近年来,随着计算机技术的发展,机械和电气化程度的提高,新技术产品 PLC 由于其特有的优点,已广泛地用于粮食加工行业。2.1 大米加工生产线集中控制系统设计要求2.1.1 控制系统设计目标控制系统设计内容根据大米加工生产线集中控制系统设计的要求,要求达到以下目标:1设备具有全自动模式。2可远程监控大米加工情况,并对加工量进行历史记录。3保证出糙率和大米加工精度。根据课题要求,该控制系统的设计主要有以下内容:1真空吸料:用一台真空泵将待发原料吸入吸料漏斗,保证原料的称料供
10、应;2称量设定:面板人工设置一次加工需要量,通过称重传感器实现自动称量控制;3砻谷控制:检测垄谷缸内的原料位置,到达设定值时实现自动砻谷控制; 4大米接收:砻谷完毕,启动鼓风机进行谷糙分离,分离出的糙米进入碾米缸继续加工,加工后,自动打开缸门,利用鼓风机和高压空气将经过筛选的大米送入料仓。2.1.2 控制系统的主要工艺流程 如图 2.1 所示大米加工生产线集中控制系统的工艺流程图,可知该集中控制系统的工作过程大概如下:原料先置于缸内或传送袋内,通过真空泵吸入吸料漏斗,由吸料漏斗再自动落入预量漏斗,由于吸料漏斗为真空,预量漏斗在此起缓冲作用。原料由预量漏斗落入称大米加工生产线集中控制系统的设计6
11、量漏斗,待光电开关检测到原料达到设定位置时,关闭放料阀门,进行称量,取得数据后,再打开放料阀门,让称好的稻谷进入砻谷缸进行砻谷,砻谷完毕后,启动鼓风机,让糙米和谷壳经过振动电机进行谷糙分离,糙米进入碾米缸进行碾米,碾米结束后起动振动筛,让合格的大米颗粒进入填料器,鼓风机和高压空气将经过筛选的大米送入料仓。谷仓或传送袋高压风机 注入式填料器碾米缸砻谷缸称量漏斗预量漏斗吸料漏斗料仓直径为50的pvc管高压输管振动筛原料 自动落入原料 自动落入鼓风机图 2.1 工艺流程图2.2 大米加工生产线集中控制系统方案选择论证由基于 PLC 的大米加工生产线集中控制系统的工艺过程可知,整条生产线三个单元功能相
12、对独立且分散,但又需要相互连锁协调。这需要一个控制系统进行指挥控制。大米加工生产线集中控制系统的设计7这些都给控制系统提出了较高要求,需要采用先进的控制技术和控制方法,以提高工程质量并简化控制线路的复杂性,兼顾降低项目成本。故本课题控制系统选型的基本原则如下:1.采用先进、可靠、成熟的控制技术以提高系统可靠性;2.采用模块化设计,提高通用性及设备效率,易于维护;3.适应今后的技术发展、要求,系统有较高的可扩展性 7。控制系统一般采用 PLC 控制或继电器-接触器控制系统。PLC 的控制与继电器的控制差别有以下几个方面。1. 控制逻辑继电器控制逻辑采用硬接线逻辑,利用继电器触点的串联或并联,及延
13、时继电器的滞后动作等组合成控制逻辑,其接线多而复杂,体积大、功耗大、故障率高,一旦系统构成后,想再改变或增加功能都很困难。另外,继电器触点数目有限,每只只有48 对触电,因此灵活性和扩充性很差。而 PLC 采用存储逻辑,其控制逻辑以程序方式存储在内存内,要改变控制逻辑,只需改变程序即可,故成为“软接线” 。其接线少,体积小,因此灵活性和扩展性都很好。PLC 中大规模集成电路组成,功耗小。2.工作方式电源接通时,继电器控制线路中各继电器同时都处于受控状态,即该吸合的都应吸合,不该吸合的都应受到某种条件限制不能吸合,它属于并联工作方式。而 PLC 的控制逻辑中,各内部器件都处于周期性循环扫描中,属
14、于串联工作方式。3.可靠性和可维护性继电器控制逻辑使用了大量的机械触点,连线也多。触点开闭会受到电弧的损坏,并有机械磨损,寿命短,因此可靠性和可维护性差。而 PLC 采用微电子技术,大量的开关动作由无触点的半导体电路完成,体积小,寿命长,可靠性高。PLC 还配有自检和监控功能。能检查出自身的故障。并随时显示给操作人员。还能动态地监视控制程序的执行情况。为现场调试和维护提供了方便。4.控制速度继电器控制逻辑依靠触点的机械动作实现控制,工作频率低,触点的开闭动作一般在几十 ms 数量级。另外,机械触点还会出现抖动问题。而 PLC 是由程序指令控制半大米加工生产线集中控制系统的设计8导体电路来实现控
15、制。属于无触点控制,速度极快,一般一条用户指令的执行时间在m 数量级,而不会出现抖动。5.定时控制继电器逻辑利用时间继电器进行时间控制。一般来说,时间继电器存在定时精确度的不高,定时范围窄,且易受环境湿度和温度变化的影响,调整时间困难等问题。PLC 使用半导体集成电路做定时器,时基脉冲由晶体振荡器产生,精度相当高。且定时时间不受环境的影响,定时范围一般从 0.001s 到若干天或更长。用户可以根据需要在程序中设置定时值,然后由软件来控制定时时间 8。从以上几个方面的比较可知,PLC 在性能上比控制逻辑优异,特别是可靠性高,设计施工周期短,调试修改方便,而且体积小,功耗低,使用维护方便,但在很小
16、的系统中使用时,价格要高于继电器控制系统。可编程序逻辑控制器(PLC)采用微处理器作为控制系统的核心,内含存储器、运算器、控制器,根据工业控制过程的特点,进行专门的电路设计,是一种通用的标准的工业控制计算机。PLC 的输入、输出模块与主模块组装在一起,不需要另外的接口,可以直接与行程开关等传感器及驱动执行机构的电磁线圈连接在一起,使控制系统比较简单。PLC 根据类似于继电器控制系统的梯形图进行程序设计,简单明了。与继电器控制相比较,PLC 性能好价格低,功率价格适中 9。根据上述分析,PLC 是现阶段基于 PLC 的泡沫发泡机控制系统最理想的控制机。所以本设计选用 PLC 作为系统控制机。下面
17、是对选定方案的分析:1.可行性分析A.功能可行性分析:由于系统各主要部分所需要满足的功能步骤及要求大多是开关量信号,所以选择可编程序逻辑控制器是完全能够满足其功能要求的。B.系统可靠性分析:系统设置了光电检测开关,对整条生产线进行监控,使系统可靠性得到了进一步的保证。C.系统扩展性分析:系统采用 PLC 作为控制器,其本身就具有极强的功能扩展性,加之 PLC 产品的完整性,使得系统功能扩展极其方便。D.系统可维护性分析:系统采用先进控制方式,大大降低了工程成本,并由于系统组态及结构简单,这使得可维护性增强。大米加工生产线集中控制系统的设计92.技术性能A吸料漏斗物位的控制;B欲量漏斗物位的控制
18、;C垄米,碾米时间限制;D阀门受阻时进行故障报警;E整个工作流程的自动化。本课题所设计的基于 PLC 的大米加工生产线集中控制系统,利用可编程序控制器和传感器,克服了人为的不稳定因素,充分利用了现代先进技术,提高了劳动生产率,为现代化的生产管理提供了强有力的物质条件。大米加工生产线集中控制系统的设计10光电开关第 3 章 系统硬件设计整个系统由软件系统和硬件系统两部分组成。本章详细介绍了系统的硬件设计,并对硬件的每一个部分进行了分析。硬件设计的每一个环节完成相应的功能,并组成一个统一的整体。在对控制系统分析的基础上,对所用的元器件进行选型,PLC 地址分配,最后对系统硬件进行总体设计。3.1
19、控制系统分析及元件选择本设计的加工集中控制系统是可编程控制器(PLC)为主要控制其,需要进行控制的是整个工艺流程的实现。通过可编程控制器(PLC)与电机(包括砻谷机、振荡电机、碾米机、真空泵及鼓风机)以及其他外部硬件(电磁阀,传感器)相连实现了整个大米加工生产线集中控制系统的设计。本次设计的控制系统的结构示意图,如图 3.1 所示:谷仓吸料漏斗预量漏斗称量漏斗垄谷缸 垄谷电机碾米缸KV1KV3 KV4KV2KV6KV5KV7鼓风机KV8 KV9碾米电机KV10KV11KV12电动阀 KV15振动电机空气电磁阀KV14排气电磁阀 KV13真空泵行程开关 1行程开关 2KV16图 3.1 系统结构示意图