新教材中的思维观点.doc

上传人:99****p 文档编号:1989810 上传时间:2019-03-25 格式:DOC 页数:4 大小:23KB
下载 相关 举报
新教材中的思维观点.doc_第1页
第1页 / 共4页
新教材中的思维观点.doc_第2页
第2页 / 共4页
新教材中的思维观点.doc_第3页
第3页 / 共4页
新教材中的思维观点.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、新教材中的思维观点高中数学新教材不仅扩大了学生的知识面,也增强了学生和实际生活联系的能力,能解决生活中的实际问题。因为数学科学具有高度的综合性、很强的实践性,不断的发展性,中学数学新教材打破原教材的框架体系,新增添了工具性、实践性很强的知识内容,正是发展的产物.新教材具有更高的综合性和灵活多样性,更具有朝气与活力,因此,把握新教材的脉搏,培养深刻严谨灵活的数学思维,提高数学素质成为燃眉之需. 新教材提升与增添的内容包括简易逻辑、平面向量、空间向量、线性规划、概率与统计、导数、研究型课题与实习作业等,这使得新教材中的知识内容立体交叉,联系更加密切,联通的渠道更多,并且富含更高的实用性.因此在高考

2、复习中,要通过总结、编织科学的知识网络,求得对知识的融会贯通,揭示知识间的内在联系.做到以下几点: 一、深刻领会数学思想方法,把立足点放在提高数学素质上.数学的思想方法是数学的精髓,只有运用数学思想方法,才能把数学的知识与技能转化为分析问题与解决问题的能力,才能形成数学的素质.知识是能力的载体,领悟并逐步学会运用蕴含在知识发生发展和深化过程中,贯穿在发现问题与解决问题过程中的数学思想方法,是从根本上提高素质,提高数学科能力的必由之路,只有通过对数学思想方法的不断积累,不断总结经验,才能从知识型向能力型转化,不断提高学习能力和学习水平.首先重视数形结合的思想方法,数形结合的思想,其实质是将抽象的

3、数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体。 其次重视分类讨论的思想方法,分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想在人的思维发展中有着重要的作用。原因有二,其一:具有明显的逻辑性特点;其二:能训练人的思维的条理性的概括性。 如“参数问题”对中学生来说并不十分陌生,它实际上是对具体的个别的问题的概括从绝对值、算术根以及在一般情况下讨论字母系数的方程、不等式、函数,到曲线方程等等,无不包含着参数讨论的思想但在含参数问题中,常常会碰到两种情形:在一种情形下,参数变化并未引起所

4、研究的问题发生质变,例如在 中,参数 的变化并未改变曲线系是抛物线系的性质;而在另一种情况下,参数的变化使问题发生了质变例如曲线系 中,随着 值的变化,该曲线可能是椭圆、双曲线、圆、二平行直线等,因此需根据 的不同范围分类讨论这种分类讨论有时并不难,但问题主要在于有没有讨论的意识在更多的情况下, “想不到要分类”比“不知如何分类”的错误更为普遍这就是所谓“素质”的问题良好的数学素养,需长期的磨练形成再次重视等价转化的思想,等价转化思想是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的数学思想方法,转化包括等价转化和非等价转化,等价转化要求转化过程中前因后果应是充分必要的,这样的转化能

5、保证转化后的结果仍为原问题所需要的结果;而非等价转化其过程是充分或必要的,这样的转化能给人带来思维的闪光点,找到解决问题的突破口,是分析问题中思维过程的主要组成部分。转化思想贯穿于整个高中数学之中,每个问题的解题过程实质就是不断转化的过程。 二、培养用化归(转化)思想处理数学问题的意识.数学问题可看作是一系列的知识形成的一个关系链.处理数学问题的实质,就是实现新问题向旧问题的转化,复杂问题向简单问题的转化,实现未知向已知的转化。虽然解决问题的过程不尽相同,但就其思考方式来讲,通常将待解决的问题通过一次又一次的转化,直至化归为一类已解决或很容易解决的问题,从而求得原问题的解答. 三、提高用函数方

6、程思想方法分析问题解决问题的能力.函数思想的实质是抛开所研究对象非数学的特性,用联系和变化的观点,建立各变量之间固有的函数关系.与这种思想相联系的就是方程的思想,在解决数学问题时,将所求的量(或与所求的量相关的量)设成未知数,用它来表示问题中的其他各量,根据题中隐含的等量关系去列方程,以求得问题的解决. 数学思维是科学思维的核心,思维的基石在于逻辑推理,逻辑思维能力是数学能力的核心,逻辑推理是数学思维的基本方法.因此教师应该多引导学生加强数学思维,增加数学训练,锻炼学生的科学思维能力,使学生灵活掌握知识,做到举一反三,触类旁通。 “授之以鱼,不如授之以渔” ,方法的掌握,思想的形成,才能使学生受益终生。 我国著名的数学家华罗庚先生认为,学习有两个过程:一个是“从薄到厚,一个是从厚到薄” ,前者是“量”的积累,后者是“质”的飞跃.雄关漫道真如铁,而今迈步从头越,只要同学们在学习中不断积累,不断探索,不断创新,定能在高考中取得骄人战绩!

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 毕业论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。