1、优化初中数学复习教学提高复习效率初中数学总复习并不是对以前所教的知识进行简单的回忆和再现最主要的是要通过对知识系统复习,使每一章节中的各个知识点联系起来,找出其变化规律、性质相似之处及不同点等从而形成完整的知识体系,达到以点成线,以线成面,以面成体的目的,只有这样学生才能把所学的知识融会贯通 一、章节复习善于转化 我国著名数学家华罗庚先生指出“学习有两个过程,一个是从薄到厚” ,前者是“量”的积累,后者则是质的飞跃,教师在复习过程中,不仅应该要求学生对所学的知识、典型的例题进行反思,而且还应该重视对学生巩固所学的知识由“量”到“质”的飞跃这一转化过程按常规的方式进行复习,通常是按照课本的顺序把
2、学生学过的知识,如数学概念、法则、公式和性质等原本地复述梳理一遍这样做学生感到乏味又不易记忆针对这一情况,我在复习概念时,采用章节知识归类编码法,即先列出所要复习的知识要点,然后归类排队,再用数字编码,这样做可增加学生复习的兴趣,增强学生的记忆和理解,最主要的是起点了把章节知识由量到质的飞跃,实现厚薄间的转化 例如,复习“直线、线段、射线”这一节内容,我把主要知识归纳为一个基础、两个要点、三种延伸、四个异同点这种复习提纲一提出,学生思维立即活跃,有的在思维,有的在议论,有的在阅读课本,设法寻找提纲的答案,我趁势把知识进行必要的讲解和点拨:一个基础,是指以直线为基本图形,线段和射线是直线上的一部
3、分;两个要点,两点确定一条直线,两条直线相交只有 1 个交点;三种延伸,三种图形的延伸,即直线可以向两方无限延伸、线段不能延伸、射线可以向一方无限延伸;四个异同点,即端点个数不同、图形特征不同、表示方法不同、描述的定义不同事实证明,这种善于转化的复习确实能提高复习效率 二、例题讲解善于变化 复习课例题的选择,应是最有代表性和最能说明问题的典型习题应能突出重点,反映大纲最主要、最基本的内容和要求对例题进行分析和解答,发挥例题以点带面的作用,有意识有目的地在例题的基础上作系列的变化,达到能挖掘问题的内涵和外延、在变化中巩固知识、在运动中寻找规律的目的,实现复习的知识从量到质的转变 例如,在复习二次
4、函数的内容时,我举了这样一个例题:二次函数的图象经过点(0,0)与(-1,-1) ,开口向上,且在 x 轴上截得的线段长为 2求它的解析式因为二次函数的图象抛物线是轴对称图形,由题意画图后,不难看出(-1,-1)是顶点,所以可用二次函数的顶点式 y=-a(x+m)2+n,再求得它的解析式(解法略) 在数学中我对例题作了变化,把题例中的条件“抛物线在 x 轴上截得的线段 2 改成 4”,求解析式变化后,由题意画图可知(-1,-1)不再是抛物线的顶点,但从图中看出,图像除了经过已知条件的两个点外,还经过一点(-4,0) ,所以可用 y=a(x-x1)(x-x2)的形式求出它的解析式再对例题进行变化
5、,把题目中的“开口向上”这一条件去掉,求解析式再次变化后,此题可有两种情况(i)开口向上;(ii)开口向下;所有有两个结论 由于条件的不断变化,使学生不能再套用原题的解题思路,从而改变了学生机械的模仿性,学会分析问题,寻找解决问题的途径,达到了在变化中巩固知识,在运动中寻找规律的目的从而在知识的纵横联系中,提高了学生灵活解题的能力 三、解题思路善于优化 我们解题后,可以将原题稍加改动,结果使一道题变成一串题,一类题,也可以借题发挥,进行横向和纵向的演变,比如:在学习一次函数时,我给学生布置了这样的 3 个题目: 已知一次函数 y=kx+b,当-2x7 时 3y11.求这个一次函数. 已知一次函
6、数 y=kx+b,当-2x7 时 3y11.求这个一次函数. 已知一次函数 y=kx+b,当-2x7 时3y11.求这个一次函数. 初看起来,这 3 个题目好像是一样的,但实际上是有较大区别的,学生发现: (A)题目只有一个解( ),而与均有两个解(而且均为 或 ); (B)题目与的两个解中的k 值互为相反数. 我让学生思考:为什么题目与的两个解中的 k值互为相反数?学生对这个问题进行了较为透彻的研究.我引导学生运用轴对称理论和平移理论进行解释,又用待定系数法进行一般性的结论:命题:已知一次函数 y=kx+b,当 mxn 时 pyq.则这样的一次函数y=kx+b 有两个解,并且这两个解的 k
7、值互为相反数.类似地也对于给出其它结论 在复习的过程中加强对解题思路优化的分析和比较,有利于培养学生良好的数学品质和思维发展,能为学生培养严谨、创新的学风打下良好的基础 四、习题归类善于类化 考查同一知识点,可以从不同的角度,采用不同的数学模型,作出多种不同的命题,教师在复习时要善于引导学生将习题归类,集中精力解决同类问题中的本质问题,总结出解这一类问题的方法和规律例如在复习应用题时,我选下列 4 个题目作为例题 题目 1:甲乙两人同时从相距 20000 米的两地相对而行,甲骑自行车每分钟行 100 米,乙骑摩托车每分钟行 250 米,问经过几分钟,甲乙两人相遇?题目 2:从东城到西城,汽车需
8、 10 小时,拖拉机需 18 小时,两车同时从两地相向而行,几小时可以相遇?题目 3:一项工程,甲队单独做需 12 天,乙队单独做需 18 天,两队合作需几天完成?题目 4:一池水单开甲管 6 小时可以注满,单开乙管 10 小时可以完成,两管同时开放,几小时可以注满? 上述四道复习应用题,题目表达方式不同,有的看似行程问题,有的看似工程问题,但本质基本相同,数量关系,解答方法基本一样通过这样的归类训练,学生便能在平时的学习中,注意做有心人,加强方法的积累和归纳,并能分析异同,把知识从一个角度迁移到另一个角度,最终达到常规图形能熟悉、常规结论要记忆、类同方法全套用、独创解法受启发的层次,提高举一反三、角类旁通的能力 为使学生轻负担的复习,从题海战术中解脱出来,学得灵活,学得扎实,优化复习过程,提高复习效率,是一个行之有效的重要途径希同仁们不断思考,不断探索,为实施素质教育作出努力和贡献