300MW汽轮机电液控制系统技术改造.doc

上传人:99****p 文档编号:2010530 上传时间:2019-03-28 格式:DOC 页数:8 大小:29KB
下载 相关 举报
300MW汽轮机电液控制系统技术改造.doc_第1页
第1页 / 共8页
300MW汽轮机电液控制系统技术改造.doc_第2页
第2页 / 共8页
300MW汽轮机电液控制系统技术改造.doc_第3页
第3页 / 共8页
300MW汽轮机电液控制系统技术改造.doc_第4页
第4页 / 共8页
300MW汽轮机电液控制系统技术改造.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、300MW 汽轮机电液控制系统技术改造一、项目提出的背景11 300MW 汽轮机电液控制系统洛阳首阳山电厂二期 2x300MW 汽轮机为日立公司 TCDF-335 亚临界压力、中间再热、双缸双排汽、冲动、凝汽式汽轮机,于 1995 年 12 月和 1996 年 3 月投产。汽轮机调节系统为数字电液调节(DEHG),采用低压汽轮机油电液调节。执行机构的设置为 1 个高压油动机带动 4 个高压调速汽门,2 个中压油动机带动 2 个中压调速汽门。每个油动机由一个电液伺服阀控制,1 台汽轮机的 3 个油动机(CV、左右侧 ICV)的电液伺服阀均为日本制造的 Abex415 型电液伺服阀。控制油和润滑油

2、均采用同一油源即主油箱内的 N32 号防锈汽轮机油,在控制油路上安装一精密滤网(精度为 51m)。12 存在问题首阳 LU 电厂 3、4 号机组从 1995 年试运开始,机组启动冲转过程中经常出现油动机突然不动的现象,经检查控制系统正常,信号传输正常,均为伺服阀故障所致,伺服阀更换后调节系统恢复正常。机组在带负荷稳定运行和中压调节门活动试验日寸,也出现油动机不动的情况及油动机全开或全关的现象,检查均为伺服阀故障。伺服阀出现故障必须进行更换,而这种调节系统设计形式伺服阀无法隔离,只能被迫停机更换。首阳山电厂 3、4 号机组由于伺服阀原因造成的停机:2000 年分别为 8 次、5 次,2001 年

3、分别为 1 次、2 次;截止到 2002 年 6 月仅 3 号机组由于伺服阀原因造成的停机就达 4 次。对拆下来的故障伺服阀进行检查,发现其内部滤芯堵塞、喷嘴堵塞、滑阀卡涩。伺服阀内部滤芯堵塞引起伺服阀前置级控制压力过低,不能控制伺眼阀的第 2 级滑阀运动,致使油动机拒动(对控制信号不响应);喷嘴堵塞油动机关闭;伺服阀卡涩,使油动机保持在全开或全关位置。油质污染是造成上述故障的主要原因,油质污染造成伺阀卡涩的故障占伺服阀故障的 851。13 油质状况及防止伺服阀卡涩的措施由于 3、4 号机组试运时就经常发生伺服阀卡涩,移交生产后首阳山电厂对油质就非常重视,1996 年成立了滤油班加强滤油管理,

4、提高油质清洁度。伺服阀卡涩频率比试运时降低了许多,但次数还比较多。日立汽轮机维护手册标明,伺服阀可在等于或低于 NASl638 第7 级污染程度的油质中良好工作。二期油系统管路设计为套管形式,滤网后向伺服阀供油的控制油管位于润滑油回油管中无法取样监测,只能监视润滑油的清洁度。根据旧的电厂用运行中汽轮机油质量标准2中对油中机械杂质的要求是外观目视无杂质,1996 年至今,每周化验 3、4号机润滑油,油样透明、无杂质(有一段时间含少量水分,极少检查有杂质)。新的电厂用运行中汽轮机油质量标准3除要求外观目视油中无机械杂质外,对油质提出了更高要求:250MW 及以上机组要求测试颗粒度,参考国外标准极限

5、值 NASl638 规定 8-9 级或 MOOG 规定 6 级;有的300MW 汽轮机润滑系统和调速系统共用一个油箱,也用矿物汽轮机油,此时油中颗粒度指标应按制造厂提供的指标,测试周期为每 6 个月 1 次。2001 年对 3、4 号机组汽轮机油取样讲行颗粒度分析,运行油颗粒度均合格(见表 1)。伺服阀卡涩引起停机,对机组安全性影响非常大,且伺服阀卡涩引起机组非计划停运影响电厂的经济性。首阳山电厂采取了以下临时措施:(1)定期更换伺服阀,超过 3 个月后遇到机组停机进行更换;(2)定期切换控制油滤芯,并对其清洗;(3)滤油机连续运行时提高油质清洁度;(4)加强油质检验。从运行看,因伺服阀卡涩引

6、起停机次数有所减少。但尚无从根本上解决问题,为此经分析、研究提出一系列改造设想,如“采用独立的控制油源” 、 “不停机更换伺服阀”等,但由于系统改造量大、改造费用高或技术上不可行而均放弃。经多方分析、调研,提出将伺服阀改型,选用抗污染性能较强的 DDV 阀的方案。二、Abex415 型电液伺服阀21 工作原理电液伺服阀是电液转换元件,又是功率放大元件,它把微小的电气信号转换成大功率的液压能输出,控制调速汽门的阀位。它的性能优劣对电液调节系统影响很大,是电液调节系统的核心和关键。该伺服阀为射流管式力反馈二级电液伺服阀,为四通阀门,其作用是控制进出液压系统的油量,使其与输入的电信号成比例,主要由阀

7、体、转距电动机(线圈、电枢)、永久性磁铁、第 1 级射流管、压力反馈弹簧、第 2 级滑阀、“O”形环、外壳等组成(见图 1)。其工作原理:少量液压油从油源流经滤网,然后流经连接在力矩马达转子上的软管,最后从喷油嘴流出。从喷嘴出来的油喷到 2 根集油管上,2 根油管分别连于滑阀的两端。无偏移时,每个集油管产生约二分之一的管道压力,因而无差压产生,所以滑阀平衡。电流流过力矩马达时即产生一定力矩,使力矩马达的转子转动一个小角度。若转子为反时针转动,则喷油管向右移动,引起更多的油喷到右边的集油管上,即产生压力,而左边集油管产生较小的压力。这样滑阀上出现压差,引起滑阀向左移动。滑阀一直向左移动直到回位弹

8、簧产生的反力与力矩马达产生的力相等为止。这时滑阀处于一新的平衡位置。第 2 级电流成正比。如电流极性相反,则滑阀移到另一侧。22 主要特点(1)该阀为射流管式力反馈二级放大电液伺服阀;(2)低滞环,高分辨率;(3)灵敏度高,线性好且控制精度高;(4)控制油采用润滑油同一油源即主油箱内的 N32 号防锈汽轮机油,对油质要求高且抗污染能力差。23 主要技术规范伺服阀的型号、参数见表 2。三、DDV 伺服阀技术介绍3.1 工作原理DDV 伺服阀由集成块电子线路、直线马达、阀芯、阀套等几部分构成(见图 2)。其工作原理为:一个电指令信号施加到阀芯位置控制器集成块上,电子线路在直线马达产生一个脉宽调制(

9、PWM)电流,震荡器使阀芯位置传感器(LVDT)励磁。经解调后的阀芯位置信号和指令位置信号进行比较,阀芯位置控制器产生一个电流输出给力矩马达,力矩马达驱动阀芯,一直使阀芯移动到指令位置。阀芯的位置与指令信号大小成正比。伺服阀的实际流量 Q 是阀芯位置与通过阀芯计量边的压力降的函数。永磁直线马达结构见图 3。其工作原理:直线马达是一个永磁的差动马达,永磁提供部分所需的磁力,直线马达所需的电流明显低于同量级的比例电磁线圈所需的电流。直线马达具有中性的中位,因为它一偏离中位就会产生力和行程,力和行程与电流成正比, ,自线马达在向外伸出的过程巾必须克服高刚度弹簧所产生的对中力与外部的附加力(即液动力及

10、由污染引起的摩擦力)。在直线马达返回中位时,对中弹簧力是和马达产生的力同方向的,等于给阀芯提供了附加的驱动力,因此使 DDV 伺服阀对污染的敏感性大为降低。直线马达借助对,卜弹簧回中,不需外加电流。停电、电缆损坏或紧急停机情况下,伺服阀均能自行回中,无需外力推动。32 主要特点DDV 阀是 MOOG 公司最新研制成功的新型电液伺服阀,目前已由MOOGGmbH(德国)公司进行批量生产。它是一种直接驱动式伺服阀,用集成电路实现阀芯位置的闭环控制。阀芯的驱动装置是永磁直线力马达,对中弹簧使阀芯保持在中位,直线力马达克服弹簧的对中力使阀芯在 2个方向都可偏离中位,平衡在一个新的位置,这样就解决了比例电

11、磁线圈只能在一个方向产:生力的不足之处。阀芯位置闭环控制电子线路与脉宽调制(PWM)驱动电子线路固化为一块集成块,用特殊的连接技术固定在伺服阀内,因此该伺服阀无需配套电子装置就能对其进行控制。DDV 阀与“射流管式伺服阀”(或“双喷嘴力反馈两级伺服阀”)相比,其最大特点是:(1)无液压前置级;(2)用大功率的直线力马达替代丁小功率的力矩马达;(3)用先进的集成块与微型位置传感器替代了工艺复杂的机械反馈装置一力反馈杆与弹簧管;(4)低的滞环,高的分辨率;(5)保持了带前置级的两级伺服阀的基本性能与技术指标;(6)对控制油质抗污染能力大大提高;(7)降低运行维护成本。33 主要技术参数DDV 伺服

12、阀的型号、参数(D633 系列)见表 3。四、技术改造方案及设备安装调试通过技术改造实现的目标:(1)彻底解决伺服阀卡涩;(2)不改变调节系统的调节特性;(3)具有高的可靠性、安全性;(4)改造量小。改造方案:(1)将汽轮机的 CV、左右侧 ICV 伺服阀均改为 DDV 型伺服阀。(2)机械方面:因 2 种伺服阀形状、开孔尺寸及安装尺寸不同,在伺服阀与执行器间加装连接用的油路集成块,并在集成块上安装进油滤网。(3)热工方面:安装电源及信号转换箱,接受 HITASS 的 D-EHG 控制信号(8mA)和 2 路 220V 交流电源(一路 UPS,一路保安段),将控制信号(8mA)变为电压信号(1

13、0V)作为 DDV 的控制信号,交流 220V 转换为直流 24V 作为 DDV 的电源。通过静止试验表明,调节系统静态特性达到与改型前试验数值基本一致,表明伺服阀改为 DDV 阀后,整个控制系统调节方法、调节性能无变化。改型前后静态试验数据见表 4、5。为检验伺服阀改为 DDV 阀后是否安全,能否保证失电状况下执行器关闭,进行了失电试验:加一开启信号,执行器开启;就地拔去信号接头,执行器自行关闭。五、运行实践及经济分析4 号机组自 2001 年 9 月运行至今,机组启停多次,调节系统可靠稳定,没有发生一次因伺服阀卡涩而造成机组的非计划停运。技术改造后对机组安全、经济方面的影响。安全性:避免了

14、伺服阀卡涩,极大地提高了机组的安全性、可靠性且机组非计划停运次数大大减少;经济性:技术改造除增加发电量外,每年约可节约费用 74 万元。技术改造费为每台机 20 万元,2 台机组共 40 万元。1 台机组 1 年就可收回 2 台机组的全部投资,经济效益显著。六、结 论实际运行情况表明:该项技术改造在于汽轮机电液控制系统与润滑油系统同用一个油源,提高了适用性及抗污染能力,解决了电液伺服阀卡涩问题,大大减少了机组非计划停运次数,有明显的经济效益。可在同类日立 00MW 汽轮机的电液控制系统推广、实施。目前国内机组电液控制系统工作液采用磷酸酯抗燃油的较多,而磷酸酯抗燃油与透平油相比理化性能要求严格、价格昂贵且维护复杂,尤其是磷酸酯抗燃油废液目前不能处理,其污染等同核污染,对人体健康有一定的危害。考虑到这些因素,机组电液控制系统工作液由抗燃油向汽轮机油系统发展是大趋势。虽然 DDV 阀对油质污染的敏感性大为降低,但油质清洁度下降,会降低伺服阀计量边使用寿命,所以加强油质化学监督一点也不能放松。同时建议机组进行一次甩负荷试验,以进一步检验 DDV 阀的甩负荷特性。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 毕业论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。