基于显微CT技术的泡沫铜基本性能有限元预测方法研究.doc

上传人:滴答 文档编号:2068469 上传时间:2019-04-12 格式:DOC 页数:84 大小:19.67MB
下载 相关 举报
基于显微CT技术的泡沫铜基本性能有限元预测方法研究.doc_第1页
第1页 / 共84页
基于显微CT技术的泡沫铜基本性能有限元预测方法研究.doc_第2页
第2页 / 共84页
基于显微CT技术的泡沫铜基本性能有限元预测方法研究.doc_第3页
第3页 / 共84页
基于显微CT技术的泡沫铜基本性能有限元预测方法研究.doc_第4页
第4页 / 共84页
基于显微CT技术的泡沫铜基本性能有限元预测方法研究.doc_第5页
第5页 / 共84页
点击查看更多>>
资源描述

1、基于显微 CT 技术的泡沫铜基本性能有限元预测方法研究Finite Element Analysisfor the Basic Performance of Copper FoamBased on Micro-Computed Tomography一 级 学 科 : 材料科学与工程 学 科 专 业 : 材 料 学 作 者 姓 名 : 指 导 老 师 : 20XX 年 12 月中文摘要i中文摘要本文以航空发动机对离心通风器轻质、紧凑、高效的需求为背景,以10PPI 聚氨酯海绵为基体,采用超声波辅助电沉积工艺制备泡沫铜材料。通过对泡沫铜孔结构进行三维重构,建立了与电沉积泡沫铜的真实三维结构相一致的

2、有限元简化模型十四面体三棱柱模型。基于十四面体三棱柱模型,开展了对泡沫铜基本性能、渗流和对流换热性能的有限元计算方法研究,深入研究了十四面体三棱柱单胞模型对各项性能的影响,建立了孔结构参数与各项性能之间的定量关系,并对模型进行优化设计。采用显微 CT 对泡沫铜试样进行断层扫描,得到一系列泡沫铜试样的二维断层图像。对图片进行阈值分割处理,通过 Origin 软件计算出一定阈值下泡沫铜试样的孔隙率,并由排水法测得试样的孔隙率,对比孔隙率的计算值和测试值,确定最终的试样阈值。基于泡沫铜的显微 CT 断层扫描结果,对泡沫铜孔结构进行三维重构,泡沫铜孔洞分布均匀,孔的三维结构近似为十四面体。利用 ANS

3、YS 软件的前处理模块,以十四面体为基体,建立泡沫铜有限元简化模型十四面体三棱柱模型,该模型较好地反映了泡沫铜的三维结构特征。基于胡克定律对泡沫铜试样进行单轴压缩屈服强度测试,并利用 ANSYS有限元软件对泡沫铜屈服强度进行有限元模拟。根据上端面应力变化和位移变化,得出应力应变曲线,进一步计算出泡沫铜的屈服强度。泡沫铜在单轴应力作用下的应力应变曲线数值模拟结果和试验测试结果有着良好的一致性。由于十四面体具有高度的对称性,泡沫铜的等效应力整体分布较为均匀,棱相交的地方由于形状的突变导致应力较为集中,随着应力的增加该区域将优先发生塑形变形;峰值应力主要集中在泡沫铜棱相交的区域,塑形变形从该区域开始

4、逐渐向四周扩展,当载荷超出泡沫铜承载极限时,失效发生。随泡沫铜的孔隙率增加,其屈服强度呈指数幂减小。基于傅里叶热传导方程对泡沫铜的有效热导率进行试验测定,并利用ANSYS 有限元软件对泡沫铜的有效热导率进行有限元模拟。泡沫铜的有效热导率的有限元计算结果和试验测试结果有着良好的一致性。由于泡沫铜的多孔结构,热流密度在模型上的分布不均匀,泡沫铜棱相交处热流密度最大,更易产生热应力集中,失效易于从此处发生。泡沫铜的有效热导率基本不随孔密度规格的变化而变化。随着泡沫铜孔隙率的增大,其孔棱横截面积减小,有效热导率随之降低。中文摘要ii基于 Forchheimer-extend-Darcy 定律对泡沫铜式

5、样的渗流和对流换热性能进行测试,并利用 Fluent 软件对泡沫铜渗流和对流换热性能进行有限元计算。泡沫铜渗流和对流换热性能的有限元计算结果和试验测试结果有着良好的一致性。泡沫铜的渗流性能随着孔隙率减小而降低。低孔密度、高孔隙率的泡沫铜的渗透性能较好。对流换热系数随孔密度增加而变大,随孔隙率的提高而减小。在高孔隙率条件下,泡沫铜骨架内的固相热传导过程对孔隙率的变化较为敏感,当孔隙率减小、即表观密度增加时,固相热传导的作用明显增强,从而有利于对流换热能力提高。增大流速、提高泡沫金属孔密度,均可增强泡沫金属的对流换热性能。对泡沫铜孔结构进行主动优化设计,得到泡沫铜十四面体圆柱棱模型。对相同孔结构参

6、数的泡沫铜十四面体圆柱棱模型进行有限元分析。相同孔隙率和孔密度条件下,泡沫铜十四面体圆柱棱模型的压缩屈服强度和有效热导率较高,渗流和对流换热性能与十四面体三棱柱模型相比也更为优异。即十四面体圆柱棱结构泡沫铜单胞模型最优结构。关键词:泡沫铜,显微 CT 技术,有限元计算,屈服强度,有效热导率,渗流性能,对流换热性能,结构优化ABSTRACTiiiABSTRACTAeroengine centrifugal ventilator is developing toward lightweight, compact and high-performance. 10 PPI polyurethane s

7、ponge is used as the matrix and copper foam is prepared by electro deposition process with ultrasonic. Three-dimensional structure of copper foam is reconstructed,and furthermore, the tetrakaidecahedron tri-prism model as the simplified finite element model of copper foam is established by using the

8、 ANSYS finite element analysis software, which can reflect the structure of copper foam more truly. On the basis, the yield strength, the effective thermal conductivity, the permeability and the convective heat transfer of copper foam are calculated by finite element method based on ANSYS. In the me

9、anwhile, the relationship between the properties and the single cell model of copper foam is studied and quantitative relations between pore structure parameters and properties of the copper foam are established. In addition, the tetrakaidecahedron tri-prism model is optimized.The copper foam specim

10、ens are scanned using the Micro CT and a set of 2D tomography images are obtained. Image segmentation is processed in MATLAB, the porosity of copper foam with a certain threshold is calculated by Origin software. Comparing with the porosity measured by drainage method, the final threshold value of s

11、pecimens is determined. On the basis, the 3D structure of copper foam is reconstructed. It can be observed that the internal spatial structure of copper foam is regular with its holes evenly distributed and isotropic, the 3D structure of pore in the copper foam is approximately tetrakaidecahedron wh

12、ile the 2D structures are roughly quadrilateral and hexagonal. The tetrakaidecahedron tri-prism model is proposed by the pretreatment module of ANSYS software, which can truly reflect the structure of copper foam.Based on the Hookes law, Uniaxial compression yield strength of copper foam samples are

13、 tested, and the ANSYS finite element analysis software is used in numerical simulation for the compressive yield strength of copper foam. According to the change of stress and displacement of the top surface, the stress-strain curve is drawn and the yield strength of copper foam is calculated in ad

14、dition. Both stress-strain curves of numerical simulation and experimental testing under uniaxial stress with copper foam show a good consistency under uniaxial stress load. Because of the ABSTRACTivhigh symmetry of tetrakaidecahedron, the equivalent stress distribution of foam copper is relatively

15、uniform. While the peak of stress is mainly concentrated in the area where the foam copper edges intersect for the mutation of the structure,where the plastic deformation expanded around from the region, the plastic deformation may occur preferentially when the stress increase. And then the structur

16、al failure occurred when the load exceeds the bearing limit of foam copper. With increasing of the porosity of foam copper, the yield strength decreases exponentially.Based on the Fourier heat conduction equation, the effective thermal conductivity of copper foam is texted, and the ANSYS finite elem

17、ent analysis software is used in numerical simulation for the effective thermal conductivity of copper foam. The numerical simulation results of the effective thermal conductivity of foam copper are in good agreement with the test results. The distribution of heat flux is uneven on the model because

18、 of the porous structure of copper foam. While the peak of thermal stress is in the area where the foam copper edges intersect, where the thermal failure may occur preferentially. The effective thermal conductivity of copper foam does not change with the change of pore density. With the porosity of

19、copper foam increases, the cross-sectional areas of edges decrease, leading to the decreases of the effective thermal conductivity.Based on the Forchheimer-extend-Darcy law, the permeability and the convective heat transfer of copper foam is texted, and the Fluent software is used in numerical simul

20、ation for the permeability and the convective heat transfer of copper foam. The numerical simulation results of the permeability and the convective heat transfer of foam copper are in good agreement with the test results. The permeability of copper foam decreases with the porosity decreases. And the

21、 copper foam with lower porosity and higher porosity performs better in permeability. The convective heat transfer coefficient of copper foam increases with the increases of pore density and decreases with the increase of porosity. The heat transfer of solid phase in copper foam is sensitive to poro

22、sity variation with a higher porosity. The effect of the heat transfer of solid phase was enhanced obviously when the porosity decreases, which is conducive to improve the convective heat transfer. the convective heat transfer can be improved by increasing the flow rate or by improving the pore dens

23、ity of copper foam.The structure of copper foam is optimized, and then the tetrakaidecahedron cylinder model is established. The finite element analyses are carried out based on the tetrakaidecahedron cylinder model of copper foam with the same pore structure parameters. The compressive yield streng

24、th and the effective thermal conductivity of the tetrakaidecahedron cylinder model of foam copper are higher, the permeability ABSTRACTvand the convective heat transfer are also better than the tetrakaidekahedron tri-prism model. As a conclusion, the tetrakaidecahedron cylinder model is the optimal

25、structure of copper foam.Key words: Copper foam, Micro-computed tomography, Finite element analysis, Yield strength, Effective thermal conductivity, Permeability, Convective heat transfer, Optimization design目录vi目录中文摘要 .iABSTRACT.iii目录 .vi第一章 绪论 .11.1 研究背景及意义 .11.2 泡沫金属 .21.2.1 泡沫金属的基本定义 .31.2.2 泡沫金

26、属的制备方法 .41.3 泡沫金属的研究现状及分析 .51.3.1 泡沫金属的性能 .51.3.2 泡沫金属性能的数值模拟研究 .81.3.3 泡沫金属的应用 .111.4 有限元法及相关软件 .111.4.1 有限元方法 .111.4.2 ANSYS 软件包 .121.4.3 Fluent 软件包 .121.5 本文研究目的及主要研究内容 .131.5.1 研究目的 .131.5.2 研究内容及技术路线 .13第二章 泡沫铜孔结构的三维重构及有限元模型建立 .172.1 引言 .172.2 实验材料 .172.3 泡沫铜的显微 CT 扫描 .182.3.1 显微 CT 断层扫描机理 .182

27、.3.2 泡沫铜的显微 CT 扫描结果 .192.4 图像分割处理 .212.4.1 图像灰度阈值分割 .212.4.2 阈值选取方法 .222.5 泡沫铜三维结构的重构 .242.6 泡沫铜有限元模型 .252.6.1 基于显微 CT 扫描结果的模型提取 .252.6.2 泡沫铜有限元模型的简化 .252.7 本章小结 .26第三章 泡沫铜基本性能的有限元研究 .283.1 引言 .283.2 泡沫铜基本性能试验测试研究 .283.2.1 泡沫铜基本性能测试原理 .28目录vii3.2.2 泡沫铜基本性能试验测试 .303.3 泡沫铜基本性能有限元计算研究 .313.3.1 有限元网格模型

28、.313.3.2 泡沫铜基本性能的有限元计算结果与分析 .333.4 泡沫铜孔结构对基本性能的影响 .353.4.1 泡沫铜孔结构对其压缩屈服强度的影响研究 .353.4.2 泡沫铜孔结构对其有效热导率的影响研究 .373.4.3 孔密度和孔隙率对泡沫铜基本性能的影响 .383.5 本章小结 .42第四章 泡沫铜渗流和对流换热性能的有限元研究 .444.1 引言 .444.2 泡沫铜渗流和对流换热性能的 试验测试 .444.2.1 泡沫铜渗流和对流换热性能的计算原理 .444.2.2 泡沫铜渗流和对流换热性能的测试 .464.3 泡沫铜渗流和对流换热性能的有限元计算研究 .474.3.1 有限元模型 .474.3.2 泡沫铜渗流性能的有限元计算研究 .484.3.3 泡沫金属渗流性能的数值模拟结果及分析 .494.4 泡沫铜孔结构对其基本性能的影响 .514.4.1 孔密度对渗流性能和换热性能的影响 .514.4.2 孔隙率对渗流性能和换热性能的影响 .584.5 本章小结 .61第五章 泡沫铜孔结构优化设计 .635.1 引言 .635.2 泡沫铜孔结构设计 .635.3 不同结构泡沫铜模型的性能对比分析 .645.3.1 压缩屈服强度对比 .645.3.2 有效热导率对比 .645.3.3 渗流性能对比 .665.3.4 换热性能对比 .675.4 本章小结

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 毕业论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。