汽车覆盖件拉伸起皱开裂及控制答案.doc

上传人:坚持 文档编号:2101072 上传时间:2019-04-25 格式:DOC 页数:15 大小:1.24MB
下载 相关 举报
汽车覆盖件拉伸起皱开裂及控制答案.doc_第1页
第1页 / 共15页
汽车覆盖件拉伸起皱开裂及控制答案.doc_第2页
第2页 / 共15页
汽车覆盖件拉伸起皱开裂及控制答案.doc_第3页
第3页 / 共15页
汽车覆盖件拉伸起皱开裂及控制答案.doc_第4页
第4页 / 共15页
汽车覆盖件拉伸起皱开裂及控制答案.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、汽车覆盖件拉延起皱开裂的影响因素及控制措施1 引言以车身覆盖件为代表的冲压零件多由复杂的空间自由曲面组成,其成形时坯料上各部分的变形状态比较复杂,差别较大,各处应力也很不均匀,常出现破裂、起皱、波纹、扭曲、松弛、瘪塘等质量缺陷。使得汽车覆盖件成为板料成形领域最难成形的零件。有的浅复杂曲面零件,因在拉深过程拉深变形不充分而起皱,而且造成刚性不足。为了防止起皱、增加刚性,可采取措施使压料面的材料减少流动或基本不动。在这种情况下,零件的成形主要是依靠材料的局部变薄而成形的。故其拉深变形特点基本上与局部变薄拉深相似。有的零件由于在同一平面上拉深的深度不一致又不对称,沿周边各处变形不均匀,以致发生起皱和

2、拉裂现象。为了控制拉深过程中材料流动均匀、变形充分而又不出现起皱和拉裂,在冲压上采用的措施基本上是开流和限流。开流就是在需要材料流动的地方减小阻力,使其顺利流动,以避免材料变薄甚至开裂。限流就是在不需求材料流动的地方加大阻力,限制其流动,以免多余的材料产生波浪而发生起皱。开流和限流的目的,都是为了合理控制板料流动,改善覆盖件成形时的力学条件,促使材料各处的变形均匀一致,保证坯料在拉延过程中不起皱,不破裂,提高零件的成形性。拉延件的工艺性是编制覆盖件冲压工艺首先要考虑的问题,只有设计出一个合理的、工艺性好的拉延件,才能保证在拉延过程中不起皱、不开裂或少起皱、少开裂。在设计拉延件时不但要考虑冲压方

3、向、压料面形状、拉伸筋的形状等可变量的设计,还要合理地增加工艺补充部分。各可变量设计之间又有相辅相成的关系,如何协调各变量的关系,是成形技术的关键,要使之不但满足该工序的拉延,还要满足该工序冲模设计和制造工艺的需要,并给下道修边、翻边工序创造有利条件。2 拉延方向的选择在车身覆盖件的工序设计中,拉延方向的选择为第一步,也是关键的一步。它不但影响拉延时板料的流动和模具结构的设计,决定能否拉出合格的拉延件,而且影响到拉延件深度、压料面形状、工艺补充部分的设计甚至直接影响到后工序。有些形状复杂的拉延件往往会因为冲压方向选择不当,而拉延不出合格的拉延件,只好改变冲压方向,这将造成整个拉延模的报废,同时

4、还将波及其他工序模具是否修改或重新设计制造。所以,拉延方向是覆盖件冲压设计中影响范围广的工艺参数之一,拉延时的冲压方向必须周密考虑后确定。2.1 开始拉延时应尽量使凸模与毛坯的接触状态良好,使各侧边流入凹模的材料均匀。- 1 -当凸模与坯料为点接触时,应适当增大接触面积,防止材料因应力集中而造成局部破裂,如图2-1a。但也要避免凸模表面与坯料以大平面接触的,否则由于平面上的拉应力值降低,材料得不到充分的塑性变形,影响零件的刚性,并容易起皱。凸模与毛坯接触的地方应尽量靠近中间,如图2-1b凸模与毛坯的接触点要多而分散,并尽可能分布均匀,防止坯料窜动,如图2-1c2.2 拉延方向的选择应使压料面各

5、部位进料阻力均匀 拉延深度是保证压料面各部位进料阻力的主要条件,因此,选择拉延方向时,应保证拉延深度均匀,深度合理,如图2-2。图 2-2 拉延件两个冲压方向示意图2.3 拉延方向有利于后工序的加工设计拉延件形状还必须考虑后工序的加工难度,现以一个零件为例说明:图2-3为一左右对称冲压加工的零件,若按(a)图的合并所决定的拉延方向,则造成零件拉延深度较深,容易拉毛,而且修边困难;若按图(b)、(c)的形式合并后所决定的冲压方向进行拉延,需拉延两次,拉延深度变浅,修边加工容易,其实仔细分析方案(b)、(c)可以看出,(b)在拉延时,从压料面上补充进材料较为困难,材料容易产生局部变形,而且在冲孔时

6、,斜锲布置空间紧张,而(c)则无上述问题。abc图 2-1 凸模开始拉延与毛坯的接触状态- 2 -(a) (b)(c)图 2-3 拉延的三种冲压方向2.4 应保证凸模能将零件需拉深的部位在一次拉延中完成,不应有凸模接触不到的死角或死区,即尽量使拉深件形状能一次拉深成形。3 工艺孔和工艺切口当覆盖件的中间部位或成双拉深的连接部位,由于拉深过程中不能从毛坯的外部得到材料的补充而导致零件的局部破裂时,可考虑在工艺补充的适当部位冲出工艺孔或工艺切口,使容易破裂的区域得到材料的补充,克服开裂现象。如图3-1是D310车型左/右侧边梁,其采用成双拉延的形式生产,但由于中间联结处深度与宽度的比值较大,成型困

7、难,用AUTOFORM模拟时反成型的R部位开裂,在反成型的中间废料部位需增加两处工艺孔,以使材料向外流动。工艺切口必须设置在容易破裂的区域附近,而这个切口必须布置在工艺补充上,修边线以外,在修边冲孔时将它们冲掉。工艺切口一般在成形过程中切出,它可充分利用材料的塑性,即在成形开始阶段利用材料径向延伸,然后切出工艺切口,利用材料切向延伸,这样成形深度可以深一些。在成形过程中切工艺切口时,并不希望切割材料与制件本体完全分离,切口废料可在以后的修边工序中一并切除。否则,将产生从冲模中清除废料的困难。- 3 -图3-1 左/右侧边梁反成型处增加工艺切口工艺孔一般在拉深前的落料冲孔工序中完成,如D310车

8、型门里板的侧窗处。图3-2 门里板的落料冲孔毛坯工艺切口、工艺孔的布置及其大小和形状要视其所处的区域情况和其向外补充材料的要求而定。一般应注意以下几点:(1)切口应与制件局部形状相适应,以使材料合理流动。(2)切口之间应留有足够的搭边,以使凸模张紧材料,保证成形清晰,避免波纹等缺陷,而且修边后可获得良好的窗口、翻边、孔缘质量。(3)工艺切口在拉深过程中冲出时,要注意冲孔的时间,如果过早切口会工艺切口- 4 -使拉深件出现皱纹;太晚则达不到切口的目的。(4)切口或冲孔的数量、大小和形状,要根据所处的位置和变形要求,通过试料来确定。(5)切口的切断部分应临近容易破裂的区域,使各处材料变形趋于均匀,

9、否则不一定能防止裂纹产生。4 压料面的选择在复杂曲面大型零件的拉深与成形中,在模具上都要设有压料面。压料面是工艺补充部分的一个组成部分,即凹模圆角半径R凹以外的一部分。凸模对坯料开始拉深前,压料圈将拉深坯料压紧在凹模压料面上。压料面的形状不但要保证压料面上的材料不皱,而且应尽量造成凸模下的材料能下凹以降低拉延深度,并保证拉入凹模里的材料不皱不裂。压料面一般有两种:一种是压料面就是零件本身的法兰面,另一种则是由工艺补充部分而形成,压料面的形状多数是曲面的。选择压料面的原则:1)压料面应尽量平整,不能有鼓起、凹坑和皱褶,在坯料被压紧时,应不产生折皱。2)压料面应尽量处于水平位置。这样有利于金属流动

10、,便于拉深工作,如图4-1所示。3)压料面应与凸模的形状保持一定几何关系,保证在拉深过程中,坯料始终处于张紧状态,并能平稳地、逐次地包拢凸模,以防产生裂纹及皱纹。因此压料面在展开后应保证如下关系:LL1 式中 L凸模表面展开长度;L1压料面展开长度;凸模表面夹角,L1)示意图。这样凸模对毛坯可以拉深,但还不一定保证最后不形成波纹及起皱。如图4-3所示的压料面形状,虽然LL1,但压料面夹角比凸模表面夹角小,因此凸模从开始拉深到最后的过程中,几个瞬间位置的压料面展开长度图 4-1 压料面与拉深方向的相对位置1-压料圈 2-凹模 3-凸模图 4-2 压料面展开长度与凸模表面展开长度比较图 4-3 压

11、料面形状- 5 -比凸模表面展开长度长,形成的皱纹比较大。故这样的压料面是不能采用的。故防皱条件是:LL1及。若不能满足这一条件,要考虑改变压料面,或在拉深件底部设置筋或反成形形状吸收余料。4)压料面应使成形深度小且各部分深度接近一致。这种压料面可保证各部分进料阻力均匀,使材料流动和塑性变形趋于均匀,减小成形难度。进料阻力不均匀,在拉深过程中毛坯可能沿凸模顶部窜动,严重时会产生破裂和皱纹。而达到进料阻力均匀的一个前提条件就是拉深深度均匀。5)压料面应使毛坯在拉深成形和修边工序中都有可靠的定位,并考虑送料和取料的方便。在实际工作中,上述各项原则不能同时达到时,应根据具体情况决定取舍。5. 工艺补

12、充形状覆盖件的形状复杂,结构不对称,为了获得成形性良好的拉延件,有时需将覆盖件上的翻边展开,将孔补满,再加上工艺补充部分使覆盖件形成一个封闭的零件,通过这些措施,使覆盖件的成形条件得到改善,从而保证覆盖件的拉延质量。但是,因为拉延后要将工艺补充部分修掉,所以要在能够拉延出满意的拉延件的条件下,尽可能地减少工艺补充部分,降低材料消耗。5.1 拉延台阶的设定拉延台阶属于工艺补充设计的一个重要内容,它具有以下作用:1) 若按覆盖件凸缘设定压料面,就可能使压料面凸凹不平,当深度差剧烈时,会出现开裂、起皱现象,设定拉延台阶,可获得加工性良好的压料面,利于成形质量。2) 对于一些覆盖件,其侧壁易出现体皱纹

13、,滑伤、冲击线、翘曲、松弛等缺陷,解决这些缺陷的办法,一般是通过拉延台阶,使材料充分变形。3) 在后工序中,零件次村往往在修边时,零件与模具形状不易重合,设定拉延台阶有利于零件定位,同时可将那些需要斜锲修边的地方,改成垂直修边。5.2 拉延台阶高度和宽度的关系图 5-1 表示了拉延台阶在拉延过程中的情况:WH:即拉延台阶宽,其效果减弱,故易出现冲击线和滑伤。WH:为理想的拉延台阶。WHHWWHWHWH图 5-1 拉延台阶高宽关系5.3 几个案例图 5-2 所示的零件边缘有很大的高差,故设定了拉延台阶,压料面的形状得到了缓和,成形效果较好。但将压料面完全取成平面,则会在零件后部 R 处也会出现拉

14、延台阶,R 处将出现皱纹,同时台阶相对其宽度较深,反而不利于拉延。图 5-2 深度不均匀设定台阶剧烈的高差得到缓解后半部不能出现台阶修边线图 5-3 所示零件周围边缘的修边形状凸凹不规矩,可通过设定拉延台阶,得到平坦的压料面。修边线图 5-3 使斜锲修边变为垂直修边图 5-4 所示碟形零件,修边时,拉延件不易与模具重合,设计拉延台阶利于修边时定位,而且台阶设定后,材料变形充分,零件刚性好,不易回弹。必须注意的是,圆角 R 易出现皱纹,因此,R1R2,这对防止皱纹出现是重要的。图 5-5 所示零件,冲击线较易出现在零件侧壁,对外观质量有所影响,若增设拉延台阶,可扩大凹模口,使冲击线出现在零件的底

15、部,同时产生较强的拉力。- 7 -修边线修边线图 5-4 成形与修边的关系R2R1图 5-5 防止冲击线修边线冲击线冲击线修边线修边线翻边线总之,应根据覆盖件的具体情况,综合考虑压料面、拉延深度、拉延方向等诸多因素,上述设定拉延台阶方法,只是工艺补充方面一些典型的例子,在实际工作,还需灵活掌握应用。6 拉延筋技术6.1 拉延筋的作用拉延筋是板料拉深成形中的主要控制手段之一,较之其它控制手段具有简单方便,易于实现等优点。它能更加稳定、有效、灵活、均匀地控制压料力。随着冲压制件的复杂程度和难度的不断增加,拉深筋的设置和调整已成为拉深模具设计及试模过程中的关键技术。其作用描述如下:(1) 增加进料阻

16、力。拉延筋阻力是由坯料通过拉延时的弯曲反弯曲变形力、摩擦力以及因变形硬化引起的再变形抗力增量二部分组成的。如图 6-1 所示,板料流经拉延筋时,在点 1 到点 6 之间发生了弯曲、回复、弯曲的反复变形,这些变形所需要的变形力加上筋与板料表面的摩擦力都直接作用在板料上,增加了板料流动的进料阻力。拉延槛也是拉延筋的一种,由于其弯曲更剧烈,所以其进料阻力大得多,更适用于曲率较小、平坦的或深度小的覆盖件,使板料成形不仅靠压边圈外材料的流入与补充,更依靠材料本身的塑性变形来成形。- 8 -图6-1 板料流过半圆筋所发生的形变(2) 调节进料阻力的分布。通过对拉延筋的位置、根数和形状的适当配置,使拉延过程

17、中各部分流动阻力均匀,坯料流入模腔的量适合制件各处的需要,从而调节材料的流动情况,增加坯料流动的稳定性。(3) 降低对压料面精度的要求。不用拉延筋时,压料面表面精度要求较高,即要求平整、光滑、贴合、均匀。使用拉延筋后,压料面间隙可适当加大,表面精度可适当降低,从而减少模面制造工作量,减少压料面的磨损。(4) 增加零件的刚性。通过增加径向拉应力,促使板料承受足够的拉胀成形,对于大曲面平坦零件成形时易出现的松弛回弹及波纹等缺陷,设置筋(槛) 可产生很大的径向拉应力使材料充分变形,减少由于变形不足而产生的回弹、松弛、扭曲、波纹、收缩等。(5) 提高零件表面质量。可防止因凸缘周边材料不均匀流动造成的不

18、可避免产生的皱纹进入修边线内,减轻或消除大底角筒形件、球形件、锥形件等零件(凸凹模之间有较大的间隙) 中间悬空部分因材料集中发生的内皱现象。(6) 合理设置拉深筋可在一定程度上降低对压床吨位的需求。通过增加胀形成分和增大进料阻力,可减小板料外形尺寸,提高材料利用率。(7) 稳定生产,降低废品率。使用拉延筋可建立所需的应力状态,增大径向拉应力,减小切向压应力,减少由于起皱、压边力以及板料厚度变化等原因而产生的废品,使拉延过程稳定。(8) 对板料有校整作用,纠正坯料的不平整缺陷,提高材料的拉延性能。6.2 拉延筋的种类、结构形式与设置拉延筋的种类与结构形式在相关资料中有详细的描述。相对而言,拉延筋

19、的设置,包括筋的大小、位置、根数等,更能影响到拉延筋所起的作用,而拉延筋的设置也正是根据希望它要起到的作用来完成的。概言之,就是在需要增加和调节进料阻力的地方设置拉延筋。设置筋应注意以下几点:(1) 零件压料后应保证不起外皱、不起内皱、不拉裂。(2) 如图 6-2 所示,考虑到筋所处位置的形面形状、后续模具结构的合理- 9 -性,当筋的位置处在平坦部位时,一般按图 6-2(a)设置。当筋的位置处在形面时,考虑到修边模的凹模刃口,一般按图 6-2(b)或图 6-2(c)所示设置。对于深拉延件,其侧壁易出现波纹,应使拉延筋离凹模口远一些,从而在一定程度上使经过拉延筋的坯料在流入凹模口前被校平。(a

20、) (b) (c)图6-2 拉延筋的位置(3) 在绝大多数情况下,拉延筋(槛) 的走向要与坯料流动方向垂直,但在某种情形下,筋的走向可与坯料流动方向成一定角度或平行于坯料流动方向,以防止走料过程中的窜料或厚度变化转移。(4) 考虑到拉延的经济性,采用最小可行的筋边距和筋间距,但如果对材料利用率没有影响,拉延筋位置应取大一些。(5) 对外覆盖件,筋的位置应设置在拉延筋拉痕不会影响产品的位置上。(6) 考虑到制造维修的方便性,应尽可能采用整体筋,在本体上直接加工出来。在不能事先设定拉延筋具体位置时,可采用镶筋。以便于调试时的变更。在平的压料面上最好采用镶筋结构,可望将压料面的数控铣加工改为磨削加工

21、,减少加工成本。(7) 拉延筋的高度变化应注意缓慢过渡。比如在圆角区的拉延筋高度为13mm,从圆角结束位置处,在 40mm 范围内,缓慢变成一般位置拉延筋的高度。在拉延筋的端头,筋的高度渐变至 0 的过渡区段应在 30mm 长左右,且端头在平面以圆角收尾。在调整时,拉延筋槽可以加深,但必须保证槽宽。(8) 对于多排的拉延筋,应使筋的高度有所变化。随着坯料从外向里流入,在伸长变形区和直线弯曲变形区,料厚变薄,压料面间隙相对增大,减小了压料力,或料厚虽无明显变化,但随着坯料的流动压料面减少,压料力也相应减少,应使筋的高度由外向里逐渐增高,使筋的进料阻力由小到大,以补偿压料力的减少。而对于压缩变形区材料在流动过程中料厚有增大的趋势,使压料面间隙相对减少而增大了进料阻力,此时使多排筋的高度由外向里逐渐降低,以适应压料力的变化。(9) 为便于模具调试维修,不论是单动拉延还是双动拉延,原则上将拉延筋设置在上模上(上模为凸筋),而将拉延筋槽做在下模,因为调试拉延模时拉延筋一般不打磨,拉延筋槽做在下模便于研配,也便于放料,与拉延筋槽做在上模相比,它的抑制力较弱,而且易出现翘曲的缺陷。如图 6-3,在情形(a)时,材料的弯曲变

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 试题真题

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。