1、第 1 页(共 22 页)2016 年云南省昆明市中考数学试卷一、填空题:每小题 3 分,共 18 分14 的相反数为 2昆明市 2016 年参加初中学业水平考试的人数约有 67300 人,将数据 67300 用科学记数法表示为 3计算: = 4如图,ABCE,BF 交 CE 于点 D,DE=DF,F=20,则B 的度数为 5如图,E,F,G,H 分别是矩形 ABCD 各边的中点, AB=6,BC=8,则四边形 EFGH的面积是 6如图,反比例函数 y= (k0)的图象经过 A,B 两点,过点 A 作 ACx 轴,垂足为C,过点 B 作 BDx 轴,垂足为 D,连接 AO,连接 BO 交 AC
2、 于点 E,若 OC=CD,四边形 BDCE 的面积为 2,则 k 的值为 二、选择题(共 8 小题,每小题 4 分,满分 32 分)7下面所给几何体的俯视图是( )第 2 页(共 22 页)A B C D8某学习小组 9 名学生参加“数学竞赛”,他们的得分情况如表:人数(人) 1 3 4 1分数(分) 80 85 90 95那么这 9 名学生所得分数的众数和中位数分别是( )A90,90 B90,85 C90 ,87.5 D85,859一元二次方程 x24x+4=0 的根的情况是( )A有两个不相等的实数根 B有两个相等的实数根C无实数根 D无法确定10不等式组 的解集为( )Ax2 Bx4
3、 C2x4 Dx 211下列运算正确的是( )A (a3) 2=a29 Ba 2a4=a8C =3 D =212如图,AB 为 O 的直径,AB=6 ,AB 弦 CD,垂足为 G,EF 切O 于点 B, A=30,连接 AD、OC、BC,下列结论不正确的是( )AEFCD B COB 是等边三角形CCG=DG D 的长为 13八年级学生去距学校 10 千米的博物馆参观,一部分学生骑自行车先走,过了 20 分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的 2倍设骑车学生的速度为 x 千米/小时,则所列方程正确的是( )A =20 B =20 C = D =14如图,在
4、正方形 ABCD 中,AC 为对角线,E 为 AB 上一点,过点 E 作 EFAD,与AC、DC 分别交于点 G,F,H 为 CG 的中点,连接 DE,EH,DH,FH下列结论:EG=DF; AEH+ADH=180; EHFDHC;若 = ,则 3SEDH=13SDHC,其中结论正确的有( )第 3 页(共 22 页)A1 个 B2 个 C3 个 D4 个三、综合题:共 9 题,满分 70 分15计算:2016 0| |+ +2sin4516如图,点 D 是 AB 上一点,DF 交 AC 于点 E,DE=FE,FCAB求证:AE=CE17如图,ABC 三个顶点的坐标分别为 A(1,1) ,B(
5、4,2) ,C (3,4)(1)请画出将ABC 向左平移 4 个单位长度后得到的图形 A1B1C1;(2)请画出ABC 关于原点 O 成中心对称的图形A 2B2C2;(3)在 x 轴上找一点 P,使 PA+PB 的值最小,请直接写出点 P 的坐标18某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为 A,B,C,D 四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是 ,并补全条形图;(2)D 等级学生人数占被调查人数的百分比为 ,在扇形统计图中 C 等级所对应的圆心角为 ;(3)该校九年级学生有 1500 人,请你估计
6、其中 A 等级的学生人数第 4 页(共 22 页)19甲、乙两个不透明的口袋,甲口袋中装有 3 个分别标有数字 1,2,3 的小球,乙口袋中装有 2 个分别标有数字 4,5 的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字(1)请用列表或树状图的方法(只选其中一种) ,表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被 3 整除的概率20如图,大楼 AB 右侧有一障碍物,在障碍物的旁边有一幢小楼 DE,在小楼的顶端 D处测得障碍物边缘点 C 的俯角为 30,测得大楼顶端 A 的仰角为 45(点 B,C ,E 在同一水平直线上
7、) ,已知 AB=80m,DE=10m ,求障碍物 B,C 两点间的距离(结果精确到0.1m) (参考数据: 1.414, 1.732)21 (列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品 2 件和乙商品 3 件共需 270元;购进甲商品 3 件和乙商品 2 件共需 230 元(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件 40 元出售,乙商品以每件 90 元出售,为满足市场需求,需购进甲、乙两种商品共 100 件,且甲种商品的数量不少于乙种商品数量的 4 倍,请你求出获利最大的进货方案,并确定最大利润22如图,AB 是 O 的
8、直径, BAC=90,四边形 EBOC 是平行四边形,EB 交O 于点D,连接 CD 并延长交 AB 的延长线于点 F(1)求证:CF 是O 的切线;(2)若F=30 ,EB=4,求图中阴影部分的面积(结果保留根号和 )第 5 页(共 22 页)23如图 1,对称轴为直线 x= 的抛物线经过 B(2,0) 、C (0,4)两点,抛物线与 x 轴的另一交点为 A(1)求抛物线的解析式;(2)若点 P 为第一象限内抛物线上的一点,设四边形 COBP 的面积为 S,求 S 的最大值;(3)如图 2,若 M 是线段 BC 上一动点,在 x 轴是否存在这样的点 Q,使MQC 为等腰三角形且MQB 为直角
9、三角形?若存在,求出点 Q 的坐标;若不存在,请说明理由第 6 页(共 22 页)2016 年云南省昆明市中考数学试卷参考答案与试题解析一、填空题:每小题 3 分,共 18 分14 的相反数为 4 【考点】相反数【分析】根据只有符号不同的两个数互为相反数,0 的相反数是 0 即可求解【解答】解:4 的相反数是 4故答案为:42昆明市 2016 年参加初中学业水平考试的人数约有 67300 人,将数据 67300 用科学记数法表示为 6.73 104 【考点】科学记数法表示较大的数【分析】科学记数法的表示形式为 a10n 的形式,其中 1|a|10,n 为整数确定 n 的值是易错点,由于 673
10、00 有 5 位,所以可以确定 n=51=4【解答】解:67300=6.7310 4,故答案为:6.73 1043计算: = 【考点】分式的加减法【分析】同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解【解答】解: = 故答案为: 4如图,ABCE,BF 交 CE 于点 D,DE=DF,F=20,则B 的度数为 40 第 7 页(共 22 页)【考点】等腰三角形的性质;平行线的性质【分析】由等腰三角形的性质证得 E=F=20,由三角形的外角定理证得CDF=E+F=40,再由平行线的性质即可求得结论【解答】解:DE=DF,F=20,E=F=20,CDF
11、=E+F=40,ABCE,B=CDF=40,故答案为:405如图,E,F,G,H 分别是矩形 ABCD 各边的中点, AB=6,BC=8,则四边形 EFGH的面积是 24 【考点】中点四边形;矩形的性质【分析】先根据 E,F,G,H 分别是矩形 ABCD 各边的中点得出AH=DH=BF=CF,AE=BE=DG=CG,故可得出 AEHDGHCGFBEF,根据 S 四边形 EFGH=S 正方形 4SAEH 即可得出结论【解答】解:E,F ,G,H 分别是矩形 ABCD 各边的中点,AB=6,BC=8,AH=DH=BF=CF=8,AE=BE=DG=CG=3在AEH 与 DGH 中, ,AEHDGH(
12、SAS) 同理可得AEHDGH CGFBEF,S 四边形 EFGH=S 正方形 4SAEH=684 34=4824=24故答案为:24第 8 页(共 22 页)6如图,反比例函数 y= (k0)的图象经过 A,B 两点,过点 A 作 ACx 轴,垂足为C,过点 B 作 BDx 轴,垂足为 D,连接 AO,连接 BO 交 AC 于点 E,若 OC=CD,四边形 BDCE 的面积为 2,则 k 的值为 【考点】反比例函数系数 k 的几何意义;平行线分线段成比例【分析】先设点 B 坐标为(a,b) ,根据平行线分线段成比例定理,求得梯形 BDCE 的上下底边长与高,再根据四边形 BDCE 的面积求得
13、 ab 的值,最后计算 k 的值【解答】解:设点 B 坐标为( a,b) ,则 DO=a,BD=bACx 轴,BDx 轴BDACOC=CDCE= BD= b,CD= DO= a四边形 BDCE 的面积为 2 ( BD+CE) CD=2,即 (b+ b)( a)=2ab=将 B(a ,b)代入反比例函数 y= (k 0) ,得k=ab=故答案为:二、选择题(共 8 小题,每小题 4 分,满分 32 分)第 9 页(共 22 页)7下面所给几何体的俯视图是( )A B C D【考点】简单几何体的三视图【分析】直接利用俯视图的观察角度从上往下观察得出答案【解答】解:由几何体可得:圆锥的俯视图是圆,且
14、有圆心故选:B8某学习小组 9 名学生参加“数学竞赛”,他们的得分情况如表:人数(人) 1 3 4 1分数(分) 80 85 90 95那么这 9 名学生所得分数的众数和中位数分别是( )A90,90 B90,85 C90 ,87.5 D85,85【考点】众数;中位数【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案【解答】解:在这一组数据中 90 是出现次数最多的,故众数是 90;排序后处于中间位置的那个数是 90,那么由中位数的定义可知,这组数据的中位数是 90;故选:A9一元二次方程 x24x+4=0
15、 的根的情况是( )A有两个不相等的实数根 B有两个相等的实数根C无实数根 D无法确定【考点】根的判别式【分析】将方程的系数代入根的判别式中,得出=0,由此即可得知该方程有两个相等的实数根【解答】解:在方程 x24x+4=0 中,=(4) 2414=0,该方程有两个相等的实数根故选 B10不等式组 的解集为( )Ax2 Bx4 C2x4 Dx 2【考点】解一元一次不等式组第 10 页(共 22 页)【分析】先求出每个不等式的解集,再根据口诀:大小小大中间找确定不等式组的解集即可【解答】解:解不等式 x3 1,得:x4,解不等式 3x+24x,得:x 2,不等式组的解集为:2x4,故选:C11下
16、列运算正确的是( )A (a3) 2=a29 Ba 2a4=a8C =3 D =2【考点】同底数幂的乘法;算术平方根;立方根;完全平方公式【分析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项【解答】解:A、 (a 3) 2=a26a+9,故错误;B、a 2a4=a6,故错误;C、 =3,故错误;D、 =2,故正确,故选 D12如图,AB 为 O 的直径,AB=6 ,AB 弦 CD,垂足为 G,EF 切O 于点 B, A=30,连接 AD、OC、BC,下列结论不正确的是( )AEFCD B COB 是等边三角形CCG=DG D 的长为 【考点】弧长的计算;切线的性质【分析】根据切线的性质定理和垂径定理判断 A;根据等边三角形的判定定理判断 B;根据垂径定理判断 C;利用弧长公式计算出 的长判断 D【解答】解:AB 为O 的直径,EF 切O 于点 B,ABEF,又 ABCD,EFCD,A 正确;AB弦 CD, = ,COB=2A=60,又 OC=OD,