1、【本讲教育信息】一. 教学内容:弧长及扇形的面积圆锥的侧面积二. 教学要求1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。2、了解圆锥的侧面积公式,并会应用公式解决问题。三. 重点及难点重点:1、弧长的公式、扇形面积公式及其应用。2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。难点:1、弧长公式、扇形面积公式的推导。2、圆锥的侧面积、全面积的计算。知识要点知识点 1、弧长公式因为 360的圆心角所对的弧长就是圆周长 C2 R,所以 1的圆心角所对的弧长是,于是可得半径为 R 的圆中,n的圆心角所对的弧长 l 的计算公式:,说明:(1)在弧长公式中,n 表示 1的圆心角的倍
2、数,n 和 180 都不带单位“度”,例如,圆的半径 R10,计算 20的圆心角所对的弧长 l 时,不要错写成 。(2)在弧长公式中,已知 l, n,R 中的任意两个量,都可以求出第三个量。知识点 2、扇形的面积如图所示,阴影部分的面积就是半径为 R,圆心角为 n的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是 360的扇形面积等于圆面积 ,所以圆心角为 1的扇形面积是 ,由此得圆心角为 n的扇形面积的计算公式是。又因为扇形的弧长 ,扇形面积 ,所以又得到扇形面积的另一个计算公式: 。知识点 3、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做
3、弓形。(2)弓形的周长弦长弧长(3)弓形的面积如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把扇形 OAmB 的面积和AOB 的面积计算出来,就可以得到弓形 AmB 的面积。当弓形所含的弧是劣弧时,如图 1 所示, 当弓形所含的弧是优弧时,如图 2 所示,当弓形所含的弧是半圆时,如图 3 所示,例:如图所示,O 的半径为 2,ABC 45,则图中阴影部分的面积是 ( )(结果用 表示)分析:由图可知 由圆周角定理可知ABC AOC,所以AOC 2ABC 90,所以OAC 是直角三角形,所以,所以注意:(1)圆周长、弧长、圆面积、扇形面积的计算公式。圆周长 弧长 圆面
4、积 扇形面积公式(2)扇形与弓形的联系与区别(2)扇形与弓形的联系与区别图示面积知识点 4、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为 l,底面圆的半径为 r,那么这个扇形的半径为 l,扇形的弧长为 2 ,圆锥的侧面积 ,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。知识点 5、圆柱的侧面积圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为 r,高为 h,则圆柱的侧面积 ,圆柱的全面积知识小结:圆锥与圆柱的比较名称 圆锥 圆柱图形图形的形成过程由一个直角三角形旋转得到的,如 RtSOA 绕直线 SO旋转一周。由一个矩形旋转得到的,如矩形ABCD 绕直线 AB 旋转一周。图形的组成 一个底面和一个侧面 两个底面和一个侧面侧面展开图的特征 扇形 矩形面积计算方法