人教版八年级上册数学教学反思.doc

上传人:sk****8 文档编号:2160892 上传时间:2019-04-30 格式:DOC 页数:23 大小:219KB
下载 相关 举报
人教版八年级上册数学教学反思.doc_第1页
第1页 / 共23页
人教版八年级上册数学教学反思.doc_第2页
第2页 / 共23页
人教版八年级上册数学教学反思.doc_第3页
第3页 / 共23页
人教版八年级上册数学教学反思.doc_第4页
第4页 / 共23页
人教版八年级上册数学教学反思.doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、八年级上数学教学反思某某中学初中部某某三角形内角和教学反思三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、三角形分类的基础,学生也有提前预习的习惯,几乎孩子们都能回答出三角形的内角和是 180 度,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是 180 度。因此本节课我提出的研究的重点是:验证三角形的内角和是 180 度。本节课主要是学生在小组中合作探索,可以量一量、剪一剪、折一

2、折。选择一种或者几种方法来验证三角形的内角和是 180 度,并运用所得的结论解决实际生活中的一些问题!让学生进行实验、动手操作、自主探索,使学生主动积极的参加到数学活动中来!创设情境,营造研究氛围。怎样提供一个良好的学习平台,使学生有兴趣去研究三角形内角的和呢?为此我以生活中与三角形相关的例子引入课题,之后学生由课题引出疑问 “三角形的内角指的是什么? ”“三角形的内角和是多少?”然后让学生根据图形自己解答疑问。然后通过计算三角板上三角形的内角和,引发学生的猜想:其他三角形的内角和也是 180吗?带着这个疑问,让学生小组合作探索,验证。小组合作的时候,学生找到了三种方法,分别是量一量,剪一剪,

3、折一折的方法。通过这三种方法验证了 “三角形的内角和是 180”的结论。然后将利用这一规律解决了刚开始的疑问。然后我给出三角形。再一次明确:不论三角形的大小如何变化,它的内角和是不变的。这节课上完之后,我在课后进行了小结,授课过程中有讲得好的环节也有处理得不好的环节,下面从几个方面小结:1、小组合作,自主探究。整节课都很注重学生自主探究,动手实验的过程,我只是一个主导者,组织好课堂教学,放手让学生去实验、讨论、归纳,没有像之前上课那样由本人讲完整节课而学生只是听。小组合作之前的部分处理的还算干脆利落,达到自己预想的结果。不足之处:如果引入部分的疑问换做如果老师要想求出破损的角的度数,这个问题会

4、和本节课的联系更紧密一些。2、量一量的方法说的的很好,但是剪一剪和折一折的方法学生没展示好。在学生展示时老师的指导没跟上,虽然展示的结果基本上出来,但没达到我预想的效果。如果再让学生用量角器量一量拼完之后的角是 180,会更清楚。另外剪一剪方法和折一折方法时应让学生说一说,将三个内角拼在一起后,让学生指一指三角形的三个内角在哪里,拼在一起有什么作用,就相当于将三个内角相加,多说这么一句话可能学生对这种方法理解的更透彻了。5、我班的一个男孩子将三个三角形的三个角拼在一起,学生的这种想法是我没有预想到的,我让他来前面展示,这种方法是错误的。如果我再鼓励一下他很有探索精神会更好。我向学生们解释他拼在

5、一起的不是一个三角形的里面的三个内角。如果让学生来说一说他错在哪里,如果学生说不出来,这时老师再说,可能会更好。另外老师把这三个三角形放在一起看一看,确实不一样大小,学生会理解的更好。我觉得还可以补充一句,让孩子们课下做三个一样的三角形摆一摆,亲自尝试一下,就更好了。5、小组汇报成果的时候,我还是觉得层次不是很清楚,与自己预想的还有出入,有一个问题,我想问学生剪一剪和折一折的方法与量一量的方法比较好在了哪里?我想通过对比加深理解。可能当时还是有点紧张,结果我忘记问这个问题了。3、老师的课堂调控能力还有待提高,当学生的展示方法的顺序和老师预想的不一样时,老师不能慌,随机应变能力还有待提高。当时我

6、虽然转变了思路,但表现可能不自然,还有待磨练。6、三角形的内角和不因三角形的大小而改变,或对三角形进行剪的操作还是拼的操作,只要最后得到的是一个三角形内角和都是 180。我给出这个结论是通过习题的形式给出的,孩子们的表现真的很好,我很高兴,第一个孩子能够在解释原因的时候就能概括出三角形的内角和不因三角形的大小而改变,令我很满意。后面的判断题有两道题和这个知识点有重复,可以换别的类型的判断题。7、我对教案进行了反复修改,创设了生活中的问题情境,激发学生想探究三角形内角和的欲望,放手让学生小组合作自己寻求验证结论的方法。但这样的放手能完成教学任务,会不会出现冷场吗?我的心里还是没底。正式上课时,学

7、生自己找出了很多验证三角形内角和的方法,很多同学的表现让我意外。许多举手的同学都是我没想到的。我也给了他们表现的机会。课下一个小女生找到我,说老师我举了好几次手,您怎么不叫我。我听了这话心里很高兴,不管这节课讲得怎么样,学生能这样跟我说,我心里很高兴,看来这节课他们的学习热情还是很高的。这节课学生谈收获的时候学生说的很不错,学生的表现让我很高兴。所以,我们要学会放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆! 全等三角形(第一课时)

8、教学反思教师的成长在于不断地总结教学经验和进行教学反思,下面就是我对我的这一节课的得失分析。本课为本章的起始课,主要是一些基础的概念和性质,本节课的设计注重学生的直观感知和情感体验,从学生熟悉的生活中的全等现象和全等图形引入,借助直观、形象、生动的多媒体课件演示,激发学生兴趣,充分调动学生的学习积极性。在教学过程中,增添了许多教材中没有的一些常见图形和课例,由易到难充分展示,给学生提供一个观察、思考的平台。通过学生的观察、思考、交流、总结归纳出概念和性质,培养了学生初步的识图能力。在整个教学过程中,学生在自主探索和合作交流中,经历了观察、操作、思考等思维过程,而这样的过程能够促进学生对数学的真

9、正理解和把握,符合学生思维发展,培养了学生分析、解决问题的能力和逻辑思维能力。通过图形的变换,让学生在不同的图形中寻找对应元素,突破本节的重、难点。在教学过程中,真正做到以生为本。让学生积极参与课堂活动之中,成为课堂的主体,而教师则适时点拨,及时引导。让学生体验到数学的乐趣,让学生从中不仅获得了知识,提高了技能,经历了数学活动,同时在情感、态度、价值观等方面也都得到了很好的发展。当然,我的这节课还存在着许多不足之处。由于准备时间不够充分,在一些例子的设置上没有完全注意到学生的差异。如问题三,找全等三角形的对应边和对应角时,设计的图形较为复杂,致使一些基础较弱的同学解决此题较为吃力。另外,由于本

10、人没有扎实系统的多媒体技术,有时所制课件效果不甚理想,由于制作和使用课件时,所用的软件版本不同,一些课件的效果受到影响。我将认真的总结经验,吸取教训,以便在以后的工作中力争做的更好。最后,感谢各位领导给予我这样一个学习、交流、展示和提高的平台,不足之处,敬请批评指正。全等三角形判定教学反思一、 教学目标的反思全等三角形的判定这一课,要求学生会通过观察几何图形识别两个三角形全等,并能通过正确的分类动手探索出两个三角形全等的条件。具体说:(1)正确识别两个三角形全等-会将两个三角形相等的边和角对应重叠在一起,看是否重合;(2)相信判定两个三角形全等不一定要 3 条边和 3 个角都相等,可能一边或一

11、角相等就足够(这个判断不一定要正确,但要有这种想法,探索命题的真假才有可能);(3)能正确地将三角形的 6 个元素按条件的个数分成:一个元素:一个边或一条角对应相等。两个元素:两边或一边一角或两角对应相等。三个元素:三边或两边和一角或一边和两角或三角对应相等。或者按:边(一条边或两条边或三条边分别对应相等),角(一个角或两个角或三个角分别对应相等),边和角一条边和一个角或一条边和两个角(又分为角边角和角角边两种)或两条边和一个角(又分为边角边和边边角两种)分别对应相等;(4)能将分好的三大类(12 小类)条件用画图的方法进行验证,找出能判定两个三角形全等的三条公理和一条定理;(5)能用这四个判

12、定,直接判定两个三角形是否全等或能补充一个条件使两个三角形全等。基于知识的完整性和分类的数学思想的渗透,我认为这个教学设计体现了知识与技能目标。增强学生的观察、猜想和动手操作能力。二、教学策略的反思1、对分类的把握。对许多学生来说进行分类有困难,学生是否能准确分类,是本节课的难点和重点之一。要找到解决难点策略,就要找到造成难点的原因,学生之所以分类有困难是因为他们不知到从什么地方下手,以及做到不重不漏。我将这个问题分为两步:(1)提出第一个问:“我们发现判定两个三角形全等不一定要 6 个元素(三个角和三条边)分别对应相等,可少一些元素,那么最少要几个元素,我们从多少个元素开始找呢?”多数学生会

13、从一个元素开始,不断地增加元素。少部分学生从边开始,一条边、两条边、三条边,然后再到角、边角(这也是一种好方法,给予肯定,但不在堂上全班探讨)。(2)提出第二个问:“从一个元素到二个元素再到三个元素,一步一步地探索下去的思路是正确的,但不够具体,请同学们将元素所代表的具体情况(边或角)写出,并进一步画出草图表示对应相等的边角位置。”小组讨论,分类如下:一一一一一一一一一一 一一一一一一一一一一一一一一一一一一一一一一一一一一一一 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一可以说,通过这样分类的学习,达到了两个目标:(1)渗透数学的分类思想;(2)明确对应关系,使

14、得后继学习变得顺利。2、容量问题。“与其把学生当天津鸭儿添入一些零碎知识,不如给他们几把锁匙,使他们可以自动去开发文化的金库和宇宙之宝藏。” 本课为了达到内容的完整性和思路的连续性-找两个三角形全等的判定,将“找的方法”-分类和验证得出结论,放在一节课上,使人觉得容量比较大。造成“容量大”的原因主要在画图验证上,而画图验证的过程中以学生画图占用的时间最长,弄不好整节课就好像在上画图课,而学生画图并不困难。因此,我将本课学习分为两部分完成,第一部分是画图和识图,放在课前学习,(1)要求学生按所给的不同的 3 个条件(附上作图步骤),画出 6 个图并在图注上已知条件,剪下来备用。在课堂上需验证时才

15、取出与小组同学对比,是否全等。实际上,学生在上课前早已忍不住进行了对比,正为有的三角形与同学的全等,有的三角形与同学的一1BDAC不全等而奇怪,不知道是同学画错了还是自己画错了。所以我在想是不是就从小组交流结果开始更好呢?(2)对给出的两个三角形直接判断是否全等。第二部分是在课堂上,对全等的概念进行强化复习(包括验证两个三角形全等的方法和书写要求,使学生明确画图验证是目前唯一的可操作的方法),分类、验证(包括举反例:对满足一个元素或两个元素对应相等的两个三角形不一定全等)、简单应用。3、关于边边角。这是本节课中的又一个难点,学生在作图中难于认识到自己发现了新大陆,96%的学生剪最大的那个三角形

16、(即图 1 中,ABC),而对ADC 却“视而不见”。实际上,学生们也注意到了 ADC,也曾经为剪哪个三角形而一筹莫展,但一想小的三角形在大的三角形中,剪大的错了还可以剪小的,于是就剪大三角形。学生对 ABC 和 ADC 都满足“边边角”认识不足,主要原因是因为它们套在一起,反而妨碍了学生的识图,但它们不全等,学生是知道的,我用几何画板演示,将 ADC 拖离ABC,让学生仔细观察,并填空:(1)如图 1,在 ABC 和 ADC 中ACACCD CAB 即 ABC 和 ABD 满足“边边角”,但它们 全等,“边边角”不能判定两个三角形 。(2)如图 2,等腰梯形 ABCD 中,ADBC, ,在

17、ABD 和 CDB 中AB (等腰梯形的两腰 )BD (公共边)ADB 但 ABD 和 CDB 全等。一2DCBA这个策略是成功的,学生不但认识到“如果两个三角形有两条边和其中一边的对角对应相等,那么这两个三角形全等”,是假命题。而且认识到不可随意放弃作图出现的点 D,以及如何书写所举的反例。4、在运用中巩固知识。由于本节课的重点是找出三角形全等的判定,因而本节课不必理会如何书写“证明两个三角形全等”,所以我参考了一些同事的方法,采取了根据条件说出两个三角形全等的理由,或者写出两个条件,让学生灵活补充一个条件使得两个三角形一定全等。补充原设计的练习,学生们很来劲,效果显著。(注:“角角边”定理

18、的证明留到下节课进行严格的书写证明。)三、成效性反思原教学设计附有作图练习卷(按要求作三角形,使得三角形有三个元素等于所给的具体值),要求学生在课堂上做,因考虑到内容较多,在上课时将学生分成 6 组,每组完成同一个作图(其它为作业),每个同学独立完成作图,然后与小组成员比较所画图形的形状和大小并汇报给全班同学。操作上可进行,但我始终有一种不踏实的感觉,可又说不出为什么。给我的学生上课,才意识到“边边角”情况,画了图的六分之一学生说全等,而六分之五的学生没动手画过,我不能直接点评,一急之下,我脱口说这一组的作图藏有一个秘密,我们再仔细画一次,这才顺利解决了问题。因而,另一个班,我就将“作图练习卷

19、”作为课前作业,正如陶行知先生所说:“行是知之始,知是行之成。” “教学做是一件事,不是三件事。我们要在做上教,在做上学。不在做上用功夫,教固不成为教,学也不成为学。” 这样处理效果更好。四、本节课“发现公理”的教学模式1、课前准备:为目标而做的巩固练习、作品、小研究。2、课中:(1)巩固、引入、提出问题;(2)学生实践活动:分类与验证;(3)教师点评;(4)归纳总结;(5)简单应用练习。3、课后:(1)回顾发现过程:撰写小报告;(2)巩固练习。等腰三角形教学反思在新的课程标准中十分强调过程一词,既要重视学生的参与过程,又要重视知识的在先过程。有了学生的参与,课堂教学才显得生机勃勃,学生才会变

20、成课堂学习的主人。知识的再现过程有助于让学生了解所学知识从何而来,解决何种问题,在有限的时间内探究知识,主动获取知识。 在教学中我们常常回遇到这样一种现象,学生年龄在增长,他们的学习困难也在增多,学生一年一年在升级,而求知的兴趣却在逐渐减弱,不少数学学得不错的学生在长大以后却远离数学,甚至讨厌数学,原因是什么呢? 从学生的方面来讲,这主要是部分学生在他们的整个学习过程中对一些概念,结论,判断不是在研究事实的过程后形成的,而是听教师讲解后知道的。因此,学生在学习中缺少主动的参与,更缺少积极的思考,确实依靠自己的实践去获取知识的过程。从教师的方面将,可能已经将教材将明白,难点,重点归纳清楚,课堂上

21、尽量减少学习的困难,让学生走一条平坦的路,但这样学生就的不到积极的思考。所以教师要全面的积极准备教学过程,让学生参与到教学果实中来,主动思考教师为他们准备的问题,让学生体会发现的乐趣,依靠自己的分析,独立思考获取知识,这中知识才是最宝贵的。例如在等腰三角形三线合一的教学中,两个班级出现了截然相反的效果。其中我是这样设计的: 1 画出等腰三角形底边上的高; 2 观察图中的全等三角形; 3 证明得出的全等三角形; 4 证出垂足就是底边上 的中点、角平分线上的焦点; 5 归纳结论 通过此过程学生也了解了等腰三角形的三线合一。但是学生的迁移、运用能力不是很强;于是在三年六班上课时,考虑到学生的参与热情

22、、理解能力,改变了教学方法,注重强调过程,于是设计: (1) 出示不等式三角形(可用几何画板)。 (2)画出同一边上高线、中线、角平分线、观察三线位置。 (3)慢慢拖动三角形一顶角将不等边三角形转化为等腰三角形,同时观察三线位置的变化过程,让学生自己去发现,展示汇报,可相互质疑。为此学生的积极性一下子被调动起来了,在相互交流中掌握了知识。 教师如何去做“过程”?这是新课程改革时期我们每位教师必须思考的首要问题,在课堂教师应设计一定情景下的数学问题,设计一些结论开放适合学生实际的问题,让学生参与到问题的探究中去,给学生思考,动手的时间和空间,变教师“主讲”为“主学”,真正让探究过程成为课堂教学的

23、主旋律。含 30 度角的直角三角形的教学反思本节课我采用从生活中创设情景的激发学生们的学习兴趣,采用拼图形的方法创设问题的情景,引导学生自主探究活动,培养学生类比、猜想、论证的研究方法研究问题,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互助,有效的教学活动,鼓励学生积极参与,大胆猜想,细心验证。使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间,生生这间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。课堂开始通过回顾旧知识,抓信新知识的切入点,使学生进入一种“喜新不厌旧”的境界,使他们

24、有兴趣进入数学课堂,为学习新知识做好准备。接下来让学生动手操作,并细心观察,大胆猜想。在这一环节上,展现给学生一个实物,使学生获得直观感受。并引导学生给出证明,证明自己的猜想的正确性。使学生懂得,即使是通过实践得出的结论,还需理论上给予证明。在性质证明完毕后,缺乏对学生记忆性练习。习题 1、2 的设计是为了能让学生把理论知识付诸于实践,检验学生的学习效果,让学生分组练习,训练学生解决实际问题的能力,让学生在合作中交流中完成任务,体会合作学习的乐趣。由学生讲解,我做必要的指导。在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。“展示平台”及“拓展提高”部分给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握的不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。全等直角三角形的判定方法的教学反思

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 课程笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。