全等三角形证明中考题精选(有答案).doc

上传人:hw****26 文档编号:2170568 上传时间:2019-05-01 格式:DOC 页数:20 大小:495KB
下载 相关 举报
全等三角形证明中考题精选(有答案).doc_第1页
第1页 / 共20页
全等三角形证明中考题精选(有答案).doc_第2页
第2页 / 共20页
全等三角形证明中考题精选(有答案).doc_第3页
第3页 / 共20页
全等三角形证明中考题精选(有答案).doc_第4页
第4页 / 共20页
全等三角形证明中考题精选(有答案).doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、新人教版八年级上学期全等三角形证明题一解答题(共 10 小题)1 (2013泉州)如图,已知 AD 是 ABC 的中线,分别过点 B、C 作 BEAD 于点 E,CFAD 交 AD 的延长线于点 F,求证:BE=CF2 (2013河南)如图 1,将两个完全相同的三角形纸片 ABC 和 DEC 重合放置,其中C=90,B=E=30(1)操作发现如图 2,固定ABC,使DEC 绕点 C 旋转,当点 D 恰好落在 AB 边上时,填空:线段 DE 与 AC 的位置关系是 _ ;设BDC 的面积为 S1,AEC 的面积为 S2,则 S1 与 S2 的数量关系是 _ (2)猜想论证当DEC 绕点 C 旋转

2、到如图 3 所示的位置时,小明猜想(1)中 S1 与 S2 的数量关系仍然成立,并尝试分别作出了BDC 和AEC 中 BC、CE 边上的高,请你证明小明的猜想(3)拓展探究已知ABC=60 ,点 D 是角平分线上一点,BD=CD=4 ,DEAB 交 BC 于点 E(如图 4) 若在射线 BA 上存在点 F,使 SDCF=SBDE,请直接写出相应的 BF 的长3 (2013大庆)如图,把一个直角三角形 ACB(ACB=90)绕着顶点 B 顺时针旋转 60,使得点 C旋转到 AB 边上的一点 D,点 A 旋转到点 E 的位置F, G 分别是 BD,BE 上的点,BF=BG ,延长 CF与 DG 交

3、于点 H(1)求证:CF=DG;(2)求出FHG 的度数4 (2012阜新) (1)如图,在 ABC 和 ADE 中,AB=AC,AD=AE ,BAC=DAE=90 当点 D 在 AC 上时,如图 1,线段 BD、CE 有怎样的数量关系和位置关系?直接写出你猜想的结论;将图 1 中的ADE 绕点 A 顺时针旋转 角(0 90 ) ,如图 2,线段 BD、CE 有怎样的数量关系和位置关系?请说明理由(2)当ABC 和ADE 满足下面甲、乙、丙中的哪个条件时,使线段 BD、CE 在(1)中的位置关系仍然成立?不必说明理由甲:AB:AC=AD:AE=1,BAC=DAE 90;乙:AB:AC=AD:A

4、E 1,BAC=DAE=90;丙:AB:AC=AD:AE 1,BAC=DAE 905 (2009仙桃)如图所示,在 ABC 中,D、E 分别是 AB、AC 上的点,DEBC,如图,然后将ADE 绕 A 点顺时针旋转一定角度,得到图,然后将 BD、CE 分别延长至 M、N ,使 DM= BD,EN=CE,得到图,请解答下列问题:(1)若 AB=AC,请探究下列数量关系:在图中,BD 与 CE 的数量关系是 _ ;在图中,猜想 AM 与 AN 的数量关系、MAN 与BAC 的数量关系,并证明你的猜想;(2)若 AB=kAC(k1) ,按上述操作方法,得到图,请继续探究:AM 与 AN 的数量关系、

5、MAN与BAC 的数量关系,直接写出你的猜想,不必证明6 (2008台州) CD 经过 BCA 顶点 C 的一条直线,CA=CB E ,F 分别是直线 CD 上两点,且BEC=CFA=(1)若直线 CD 经过BCA 的内部,且 E,F 在射线 CD 上,请解决下面两个问题:如图 1,若BCA=90 ,=90,则 BE _ CF;EF _ |BEAF|(填“”, “”或“ =”) ;如图 2,若 0BCA180,请添加一个关于 与BCA 关系的条件 _ ,使中的两个结论仍然成立,并证明两个结论成立(2)如图 3,若直线 CD 经过BCA 的外部,= BCA,请提出 EF,BE ,AF 三条线段数

6、量关系的合理猜想(不要求证明) 7 (2007绍兴)课外兴趣小组活动时,许老师出示了如下问题:如图 1,己知四边形 ABCD 中,AC 平分DAB,DAB=60,B 与D 互补,求证:AB+AD= AC小敏反复探索,不得其解她想,若将四边形 ABCD 特殊化,看如何解决该问题(1)特殊情况入手添加条件:“B= D”,如图 2,可证 AB+AD= AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图 3,过 C 点分别作 AB、AD 的垂线,垂足分别为 E、F (请你补全证明)8 (2007常德)如图,已知 AB=AC,(1)若 CE=BD,求证:GE=GD;

7、(2)若 CE=mBD(m 为正数) ,试猜想 GE 与 GD 有何关系 (只写结论,不证明)9 (2006泰安) (1)已知:如图 ,在AOB 和COD 中,OA=OB,OC=OD ,AOB=COD=60 ,求证:AC=BD; APB=60 度;(2)如图,在AOB 和COD 中,若 OA=OB,OC=OD , AOB=COD=,则 AC 与 BD 间的等量关系式为 _ ;APB 的大小为 _ ;(3)如图,在AOB 和COD 中,若 OA=kOB,OC=kOD(k1) ,AOB= COD=,则 AC 与BD 间的等量关系式为 _ ;APB 的大小为 10 (2005南宁) (A 类)如图,

8、DE AB、DF AC垂足分别为 E、F请你从下面三个条件中,再选出两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况) AB=AC;BD=CD; BE=CF已知:DEAB、DF AC,垂足分别为 E、F,AB=AC,BD=CD求证:BE=CF已知:DEAB、DF AC,垂足分别为 E、F,AB=AC,BE=CF求证:BD=CD已知:DEAB、DF AC,垂足分别为 E、F,BD=CD,BE=CF求证:AB=AC(B 类)如图,EGAF,请你从下面三个条件中,再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况) AB=AC;DE=DF; BE=CF已知:

9、EGAF,AB=AC,DE=DF求证:BE=CF新人教版八年级上学期全等三角形证明题参考答案与试题解析一解答题(共 10 小题)1 (2013泉州)如图,已知 AD 是 ABC 的中线,分别过点 B、C 作 BEAD 于点 E,CFAD 交 AD 的延长线于点 F,求证:BE=CF考点: 全等三角形的判定与性质1125860专题: 证明题分析: 根据中线的定义可得 BD=CD,然后利用“ 角角边”证明 BDE 和CDF 全等,根据全等三角形对应边相等即可得证解答: 证明:AD 是ABC 的中线,BD=CD,BEAD,CF AD,BED=CFD=90,在BDE 和CDF 中,BDECDF(AAS

10、) ,BE=CF点评: 本题考查了全等三角形的判定与性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用2 (2013河南)如图 1,将两个完全相同的三角形纸片 ABC 和 DEC 重合放置,其中C=90,B=E=30(1)操作发现如图 2,固定ABC,使DEC 绕点 C 旋转,当点 D 恰好落在 AB 边上时,填空:线段 DE 与 AC 的位置关系是 DEAC ;设BDC 的面积为 S1,AEC 的面积为 S2,则 S1 与 S2 的数量关系是 S 1=S2 (2)猜想论证当DEC 绕点 C 旋转到如图 3 所示的位置时,小明猜想(1)中 S1 与 S2 的数量关系仍然成立,

11、并尝试分别作出了BDC 和AEC 中 BC、CE 边上的高,请你证明小明的猜想(3)拓展探究已知ABC=60 ,点 D 是角平分线上一点,BD=CD=4 ,DEAB 交 BC 于点 E(如图 4) 若在射线 BA 上存在点 F,使 SDCF=SBDE,请直接写出相应的 BF 的长考点: 全等三角形的判定与性质1125860专题: 几何综合题;压轴题分析: (1)根据旋转的性质可得 AC=CD,然后求出 ACD 是等边三角形,根据等边三角形的性质可得ACD=60 ,然后根据内错角相等,两直线平行解答;根据等边三角形的性质可得 AC=AD,再根据直角三角形 30角所对的直角边等于斜边的一半求出 A

12、C= AB,然后求出 AC=BE,再根据等边三角形的性质求出点 C 到 AB 的距离等于点 D 到AC 的距离,然后根据等底等高的三角形的面积相等解答;(2)根据旋转的性质可得 BC=CE,AC=CD,再求出ACN=DCM,然后利用“角角边” 证明ACN 和DCM 全等,根据全等三角形对应边相等可得 AN=DM,然后利用等底等高的三角形的面积相等证明;(3)过点 D 作 DF1BE,求出四边形 BEDF1 是菱形,根据菱形的对边相等可得 BE=DF1,然后根据等底等高的三角形的面积相等可知点 F1 为所求的点,过点 D 作 DF2BD,求出 F1DF2=60,从而得到DF 1F2 是等边三角形

13、,然后求出 DF1=DF2,再求出 CDF1=CDF2,利用“边角边”证明CDF1 和 CDF2 全等,根据全等三角形的面积相等可得点 F2 也是所求的点,然后在等腰BDE中求出 BE 的长,即可得解解答: 解:(1)DEC 绕点 C 旋转点 D 恰好落在 AB 边上,AC=CD,BAC=90B=9030=60,ACD 是等边三角形,ACD=60,又CDE=BAC=60,ACD=CDE,DEAC;B=30, C=90,CD=AC= AB,BD=AD=AC,根据等边三角形的性质,ACD 的边 AC、AD 上的高相等,BDC 的面积和AEC 的面积相等(等底等高的三角形的面积相等) ,即 S1=S

14、2;故答案为:DE AC;S 1=S2;(2)如图,DEC 是由ABC 绕点 C 旋转得到,BC=CE,AC=CD,ACN+BCN=90,DCM+ BCN=18090=90,ACN=DCM,在 ACN 和DCM 中,ACNDCM(AAS) ,AN=DM,BDC 的面积和AEC 的面积相等(等底等高的三角形的面积相等) ,即 S1=S2;(3)如图,过点 D 作 DF1BE,易求四边形 BEDF1 是菱形,所以 BE=DF1,且 BE、DF 1 上的高相等,此时 SDCF=SBDE,过点 D 作 DF2BD,ABC=60,F1DF2=ABC=60,DF1F2 是等边三角形,DF1=DF2,BD=

15、CD,ABC=60,点 D 是角平分线上一点,DBC=DCB= 60=30,CDF1=18030=150,CDF2=36015060=150,CDF1=CDF2,在 CDF1 和CDF 2 中,CDF1CDF2(SAS ) ,点 F2 也是所求的点,ABC=60,点 D 是角平分线上一点,DEAB,DBC=BDE=ABD= 60=30,又 BD=4,BE= 4cos30=2 = ,BF1= ,BF 2=BF1+F1F2= + = ,故 BF 的长为 或 点评: 本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形 30角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键, (3)要注意符合条件的点 F 有两个3 (2013大庆)如图,把一个直角三角形 ACB(ACB=90)绕着顶点 B 顺时针旋转 60,使得点 C 旋转到 AB 边上的一点 D,点 A 旋转到点 E 的位置F,G 分别是 BD,BE 上的点,BF=BG ,延长 CF 与DG 交于点 H(1)求证:CF=DG;(2)求出FHG 的度数考点: 全等三角形的判定与性质1125860分析: (1)在CBF 和DBG 中,利用 SAS 即可证得两个三角形全等,利用全等三角形的对应边相等

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 教育教学资料库 > 课程笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。