1、 毕业设计(论文、作业)毕业设计(论文、作业)题目:基于 PLC 控制的气动机械手的设计 分校(站、点): 年级、专业: 教育层次: 学生姓名: 学 号: 指导教师: 完成日期: 目 录摘要一、机械手设计方案1(一)机械手的手部结构方案设计 1(二)机械手的手腕结构方案设计 1(三)机械手的手臂结构方案设计 1(四)机械手的驱动方案设计 1(五)机械手的控制方案设计 1(六)机械手的主要参数 1(七)机械手的技术参数列表 2二、机械手手部设计2(一)夹持式手部结构 2(二)升降缸的尺寸设计与校核和伸缩缸的选择 3三、机械手的PLC控制设计13(一)可编程序控制器的选择及工作过程13(二)机械手
2、可编程序控制器控制方案13四、结论 14参考文献 14致谢 16内容摘要对气动机械手的基本要求是能快速、准确地拾-放和搬运物件,这就要求它们具有高精度、快速反应、一定的承载能力、足够的工作空间和灵活的自由度及在任意位置都能自动定位等特性。设计气动机械手的原则是:充分分析作业对象(工件)的作业技术要求,拟定最合理的作业工序和工艺,并满足系统功能要求和环境条件;明确工件的结构形状和材料特性,定位精度要求,抓取、搬运时的受力特性、尺寸和质量参数等,从而进一步确定对机械手结构及运行控制的要求;尽量选用定型的标准组件,简化设计制造过程,兼顾通用性和专用性,并能实现柔性转换和编程控制.本次设计的机械手是通
3、用气动上下料机械手,是一种模拟大中型场合工作的机械搬运设备。可以改变动作程序的自动搬运或操作设备,操作频繁的生产场合。在发出指令协调各有关驱动器之间的运动的同时,还要完成编程、示教/再现以及其他环境状况(传感器信息) 、工艺要求、外部相关设备之间的信息传递和协调工作,使各关节能按预定运动规律运动。关键词:机械手 PCL 气动1基于PLC控制的气动机械手的设计一、机械手的设计方案(一)机械手的手部结构方案设计为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料时,使用夹持式手部;当工件是板料时,使用气流负压式吸盘。(二)机械手的手腕结构方案设计考虑到机械手的通用性,同时由于
4、被抓取工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。(三)机械手的手臂结构方案设计按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转和降(或俯仰)运动。手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的横移。手臂的各种运动由气缸来实现。(四)机械手的驱动方案设计由于气压传动系统的动作迅速,反应灵敏,阻力损失和泄漏较小,成本低廉因此本机械手采用气压传动方式。(五)机械手的控制方案设计考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器(PLC)对机械手进行控制。当机械手的动作
5、流程改变时,只需改变PLC程序即可实现,非常方便快捷。(六)机械手的主要参数1、机械手的最大抓重是其规格的主参数,由于是采用气动方式驱动,因此考虑抓取的物体不应该太重,查阅相关机械手的设计参数,结合工业生产的实际情况,本设计设计抓取的工件质量为5公斤2、基本参数运动速度是机械手主要的基本参数。操作节拍对机械手速度提出了要求,设计速度过低限制了它的使用范围。而影响机械手动作快慢的主要因素是手臂伸缩及回转的速度。该机械手最大移动速度设计为 。最大回转速度设计为 。平均移sm/0.1s/90动速度为 。平均回转速度为 。机械手动作时有启动、停止过程的加、减sm/8.06速度存在,用速度一行程曲线来说
6、明速度特性较为全面,因为平均速度与行程有关,故用平均速度表示速度的快慢更为符合速度特性。除了运动速度以外,手臂设计的基本参数还有伸缩行程和工作半径。大部分机械手设计成相当于人工坐着或站着且略有走动操2作的空间。过大的伸缩行程和工作半径,必然带来偏重力矩增大而刚性降低。在这种情况下宜采用自动传送装置为好。根据统计和比较,该机械手手臂的伸缩行程定为600mm,最大工作半径约为 。手臂升降行程定为 。定位精度也是基本参数之一。m140m120该机械手的定位精度为 。(七) 机械手的技术参数列表1、用途:用于自动输送线的上下料。2、设计技术参数:(1)抓重: kg5(2)自由度数:4个自由度(3)坐标
7、型式:圆柱坐标(4)最大工作半径: m140(5)手臂最大中心高: 25(6)手臂运动参数: 伸缩行程伸缩速度 s/升降行程 10升降速度 m/25回转范围 8回转速度 s/90(7)手腕运动参数: 回转范围 1回转速度 s/(8)手指夹持范围:棒料: m508(9)定位方式:行程开关或可调机械挡块等(10)定位精度: m1(11)驱动方式:气压传动(12)控制方式: 点位程序控制(采用PLC)二、机械手手部设计(一)夹持式手部结构夹持式手部结构由手指(或手爪)和传力机构所组成。其传力结构形式比较多,如滑槽杠杆式、斜楔杠杆式、齿轮齿条式、弹簧杠杆式等。1、手指的形状和分类夹持式是最常见的一种,
8、其中常用的有两指式、多指式和双手双指式:按手指夹持工件3的部位又可分为内卡式(或内涨式)和外夹式两种:按模仿人手手指的动作,手指可分为一支点回转型,二支点回转型和移动型(或称直进型),其中以二支点回转型为基本型式。当二支点回转型手指的两个回转支点的距离缩小到无穷小时,就变成了一支点回转型手指;同理,当二支点回转型手指的手指长度变成无穷长时,就成为移动型。回转型手指开闭角较小,结构简单,制造容易,应用广泛。移动型应用较少,其结构比较复杂庞大,当移动型手指夹持直径变化的零件时不影响其轴心的位置,能适应不同直径的工件。2、设计时注意的问题(1)具有足够的握力(即夹紧力)在确定手指的握力时,除考虑工件
9、重量外,还应考虑在传送或操作过程中所产生的惯性力和振动,以保证工件不致产生松动或脱落。(2)手指间应具有一定的开闭角两手指张开与闭合的两个极限位置所夹的角度称为手指的开闭角。手指的开闭角应保证工件能顺利进入或脱开,若夹持不同直径的工件,应按最大直径的工件考虑。对于移动型手指只有开闭幅度的要求。(3)保证工件准确定位为使手指和被夹持工件保持准确的相对位置,必须根据被抓取工件的形状,选择相应的手指形状。例如圆柱形工件采用带“V”形面的手指,以便自动定心。(4)具有足够的强度和刚度手指除受到被夹持工件的反作用力外,还受到机械手在运动过程中所产生的惯性力和振动的影响,要求有足够的强度和刚度以防折断或弯
10、曲变形,当应尽量使结构简单紧凑,自重轻,并使手部的中心在手腕的回转轴线上,以使手腕的扭转力矩最小为佳。(5)考虑被抓取对象的要求根据机械手的工作需要,通过比较,我们采用的机械手的手部结构是一支点两指回转型,由于工件多为圆柱形,故手指形状设计成V型。(二)升降缸的尺寸设计与校核和伸缩缸的选择1、气缸的分类普通气缸的结构组成见图3-1。主要由前盖、后盖9、活塞6、活塞杆4、缸筒5 其他一些零件组成。图3-1普通气缸的结构组成41组合防尘圈;前端盖;3轴用YX密封圈;4活塞杆;5缸筒;6活塞;7孔用YX密封圈;8缓冲调节阀;9后端盖(1)单作用气缸柱塞式气缸:压缩空气只能使柱塞向一个方向运动;借助外
11、力或重力复位活塞式气缸:压缩空气只能使活塞向一个方向运动;借助外力或重力复位(或借助弹簧力复位;用于行程较小场合)薄膜式气缸:以膜片代替活塞的气缸。单向作用;借助弹簧力复位;行程短;结构简单,缸体内壁不须加工;须按行程比例增大直径。若无弹簧,用压缩空气复位,即为双向作用薄膜式气缸。行程较长的薄膜式气缸膜片受到滚压,常称滚压(风箱)式气缸。(2)双作用气缸普通气缸:利用压缩空气使活塞向两个方向运动,活塞行程可根据实际需要选定,双向作用的力和速度不同双活塞杆气缸:压缩空气可使活塞向两个方向运动,且其速度和行程都相等不可调缓冲气缸:设有缓冲装置以使活塞临近行程终点时减速,防止冲击,缓冲效果不可调整可
12、调缓冲气缸:缓冲装置的减速和缓冲效果可根据需要调整(3)特殊气缸差动气缸:气缸活塞两端有效面积差较大,利用压力差原理使活塞往复运动,工作时活塞杆侧始终通以压缩空气双活塞气缸:两个活塞同时向相反方向运动多位气缸:活塞杆沿行程长度方向可在多个位置停留,图示结构有四个位置串联气缸:在一根活塞杆上串联多个活塞,可获得和各活塞有效面积总和成正比的输出力冲击气缸:利用突然大量供气和快速排气相结合的方法得到活塞杆的快速冲击运动,用于切断、冲孔、打入工件等数字气缸:将若干个活塞沿轴向依次装在一起,每个活塞的行程由小到大,按几何级数增加回转气缸:进排气导管和导气头固定而气缸本体可相对转动。用于机床夹具和线材卷曲
13、装置上伺服气缸:将输入的气压信号成比例地转换为活塞杆的机械位移。用于自动调节系统中。挠性气缸缸筒由挠性材料制成,由夹住缸筒的滚子代替活塞。用于输出力小,占地空间小,行程较长的场合,缸筒可适当弯曲钢索式气缸:以钢丝绳代替刚性活塞杆的一种气缸,用于小直径,特长行程的场合(4)组合气缸增压气缸:活塞杆面积不相等,根据力平衡原理,可由小活塞端输出高压气体气-液增压缸:液体是不可压缩的,根据力的平衡原理,利用两两相连活塞面积的不等,5压缩空气驱动大活塞,小活塞便可输出相应比例的高压液体气-液阻尼缸:利用液体不可压缩的性能及液体流量易于控制的优点,获得活塞杆的稳速运动2、升降气缸的尺寸设计与校核(1) 活
14、塞杆上输出力和缸径的计算本课题中采用的是双作用气缸,单活塞杆双作用气缸是使用最为广泛的一种普通气缸,因其只在活塞一侧有活塞杆,所以压缩空气作用在活塞两侧的有效面积不等.活塞左行时活塞杆产生推力 ,活塞右行时产生拉力 。1F2F(3-1)24zDp(3-2)2()zFdF式中 活塞杆的推力(N);活塞杆的拉力(N);活塞直径(m);活塞杆直径(m);气缸工作压力(Pa);气缸工作总阻力(N);气缸工作时的总阻力 与众多因素有关,如运动部件惯性力,背压阻力,密封处摩擦zF力等.以上因素可以载荷率 的形式计入公式,如要求气缸的静推力 和静拉力 ,则计入1F2载荷率后(3-3)(3-4)计入载荷率就能
15、保证气缸工作时的动态特征.若气缸动态参数要求较高;且工作频率高,其载荷率一般取 ,速度高时取小值,速度低时取大值.若气缸动态参数要求一般,且工作频率低,基本是匀速运动,其载荷率可取 。根据要求本次设计中,我们取。活塞杆拉力 为克服机械手的自重(1.5KG)和克服抓取物的重量(0.5KG)所用0.82F的力为 2(1.5)0FN由式(3-3,3-4)可求得气缸直径D。当推力作功时6(3-5)(3-6)用式(3-6)计算时,活塞杆d可根据气缸拉力预先估定,详细计算见活塞的计算。估定活塞杆直径可按 计算(必要时也可取 0.4) 。若将代入式(3-6) ,则可得(3-7)54201.05.1.83cm
16、式中系数在缸径较大时取小值,缸径较小时取大值。以上公式计算出的气缸内径D应圆整为标准值。参考表3-1得 32Dm根据 可估算得 0.2538dm表缸筒内径系列 (mm)810121620253240506380(90)100(110)125(140)160(180)200(220)250320400500630注:无括号的数值为优先选用者活塞杆直径系列 (mm)4 5 6 8 10121416182022252832364045505663708090100110125140160180200220250280320360400(2)活塞杆的计算按强度条件计算 当活塞杆的长度L较小时(L10d
17、) ,可以只按强度条件计算活塞杆直径d(3-8)式中 气缸的推力( N) ;7活塞杆材料的许用应力(Pa),材料的抗拉强度( Pa) ;安全系数,S1.4。按纵向弯曲极限力计算 气缸承受轴向压力以后,会产生轴向弯曲,当纵向力达到极限力 以后,活塞杆会产生永久性弯曲变形,出现不稳定现象。该极限力与缸的安装方式、活塞杆直径及行程有关。当长细比 时(3-9)当长细比 时(3-10)式中 活塞杆计算长度(m) ,见表3-3活塞杆横截面回转半径,实心杆空心杆活塞杆横截面惯性矩,实心杆 空心杆空心活塞杆内径直径(m) ;活塞杆截面积实心杆 空心杆 系数,见表3-3材料弹性模量,对钢取材料强度实验值,对钢取系数,对钢取a=1/5000安装方式为铰支-铰支,根据表3-3得知取n=1,由于活塞杆长度L=10cm(行程为5mm),活塞杆杆横截面回转半径(实心杆) 31204IdKmA所以长细比 30.1582LK