1、 1第十六章 分式161 分式16.1.1 从分数到分式一、 教学目标1 了解分式、有理式的概念.2理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1重点:理解分式有意义的条件,分式的值为零的条件.2难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1让学生填写 P4思考,学生自己依次填出: , , , .710as32v2学生看 P3 的问题:一艘轮船在静水中的最大航速为 20 千米/时,它沿江以最大航速顺流航行 100 千米所用实践,与以最大航速逆流航行 60 千米所用时间相等,江水的流速为多少?请同学们跟着教师一
2、起设未知数,列方程.设江水的流速为 x 千米/时.轮船顺流航行 100 千米所用的时间为 小时,逆流航行 60 千米所用时间 小时,v201v206所以 = .v20163. 以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不v2016as同点?五、例题讲解P5 例 1. 当 x 为何值时,分式有意义.分析已知分式有意义,就可以知道分式的分母不为零,进一步解出字母 x 的取值范围.提问如果题目为:当 x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例 2. 当 m 为何值时,分式的值为 0?(1) (2) (
3、3) 分析 分式的值为 0 时,必须同时满足两个条件: 分母不能为零; 分子为零,这 1 2样求出的 m 的解集中的公共部分,就是这类题目的解.答案 (1)m=0 (2)m=2 (3)m=1六、随堂练习1判断下列各式哪些是整式,哪些是分式?9x+4, , , , ,x7209y5428y91x2. 当 x 取何值时,下列分式有意义?(1) (2) (3)12452x323. 当 x 为何值时,分式的值为 0?(1) (2) (3) 七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做 x 个零件,则他 8 小时做零件 个,做 80 个零件需 小时.(2)轮
4、船在静水中每小时走 a 千米,水流的速度是 b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与 y 的差于 4 的商是 .2当 x 取何值时,分式 无意义?3. 当 x 为何值时,分式 的值为 0?八、答案:六、1.整式:9x+4, , 分式: , ,209y54mx7238y91x2(1)x-2 (2)x (3)x2 3(1)x=-7 (2)x=0 (3)x=-1七、118x, ,a+b, , ; 整式:8x, a+b, ; bas4yx4分式: , x802 X = 3. x=-1课后反思:57x317x213x213316.1.2 分式的基本性质一、教学目
5、标1理解分式的基本性质. 2会用分式的基本性质将分式变形.二、重点、难点1重点: 理解分式的基本性质.2难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1P7 的例 2 是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2P9 的例 3、例 4 地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最
6、简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3P11 习题 16.1 的第 5 题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含-号”是分式的基本性质的应用之一,所以补充例 5.四、课堂引入1请同学们考虑: 与 相等吗? 与 相等吗?为什么?2说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲
7、解P7 例 2.填空:分析应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11 例 3约分:分析 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11 例 4通分:分析 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例 5.不改变分式的值,使下列分式的分子和分母都不含“-”号. 43201549834, , , , 。ab56yx3nm267yx43分析每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分
8、式的值不变.解: = , = , = , a5ab5yx3nm2= , = 。nm67yx43六、随堂练习1填空:(1) = (2) = x323286ba(3) = (4) =cabn2yx2约分:(1) (2) (3) (4)cab6328mn53216xyzxy3)(23通分:(1) 和 (2) 和 32abc25xya23b(3) 和 (4) 和c814不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) (2) (3) (4) 23abyx237ba235xamba2)(七、课后练习1判断下列约分是否正确:(1) = (2) =cb2yx1(3) =0nm2通分:(1) 和
9、 (2) 和2ab7x123不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1) (2) y35八、答案:六、1(1)2x (2) 4b (3) bn+n (4)x+y 2(1) (2) (3) (4)-2(x-y) 2bcanm42zx3通分:(1) = , = 3a3205cba253210(2) = , = xy6xy6(3) = = 2abc238128bc2a(4) = =y)(y1y)1(y4(1) (2) (3) (4) 23abx237ba25xmb2课后反思:6162 分式的运算1621 分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.二
10、、重点、难点1重点:会用分式乘除的法则进行运算.2难点:灵活运用分式乘除的法则进行运算 .三、例、习题的意图分析1P13 本节的引入还是用问题 1 求容积的高,问题 2 求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是 ,大拖拉机的工作效率是nmabv小拖拉机的工作效率的 倍.引出了分式的乘除法的实际存在的意义,进一步引出nbmaP14观察从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2P14 例 1 应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3P14 例 2 是较复杂的分式乘除,分式的分子、分母
11、是多项式,应先把多项式分解因式,再进行约分.4P14 例 3 是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知 a1,因此(a-1) 2=a2-2a+11,因此(a-1) 2=a2-2a+1a2-2+1,即(a-1) 2a2-1,可得出“丰收 2 号”单位面积产量高.六、随堂练习计算(1) (2) (3) abc2 254nmxy27(4)-8xy (5) (6) xy54122aa )3(96y七、课后练习计算(1) (2) (3) yx32 abc21035yxa2851(4) (5) (6) ba2 )4(x3)(4八、答案:六、(1)ab (2) (3
12、) (4)-20x 2 (5)nm1y)2(1a(6) 3y七、(1) (2) (3) (4) x27cbax0b3(5) (6))(5yx课后反思:81621 分式的乘除(二)一、教学目标:熟练地进行分式乘除法的混合运算.二、重点、难点1重点:熟练地进行分式乘除法的混合运算.2难点:熟练地进行分式乘除法的混合运算.三、例、习题的意图分析1 P17 页例 4 是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材 P17 例 4 只把运算统一乘法,而没有把 25x2-9 分解因式,就
13、得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2, P17 页例 4 中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.四、课堂引入计算(1) (2) )(xy)21(34xy五、例题讲解(P17)例 4.计算分析 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的. (补充)例.计算 (1) )4(398(232bxayxb= (先把除法统一成乘法运算)23= (判断运算的符号)xbayx9823=
14、(约分到最简分式)316(2) xx3)2()(422= (先把除法统一成乘法运算)x16= (分子、分母中的多项式分解因式)x3)()2(39= )3(21)2(3xx=六、随堂练习计算(1) (2))(2163bacab 1032642)(5bacbac(3) (4)xyxy9)(43 2xyyxy七、课后练习计算(1) (2)6(43822zyxyx 93249622aba(3) (4)291 xyxy2)(八、答案:六.(1) (2) (3) (4)-yca43485c)(x七. (1) (2) (3) (4)36yxz2b12yx1课后反思:101621 分式的乘除(三)一、教学目标
15、:理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1重点:熟练地进行分式乘方的运算.2难点:熟练地进行分式乘、除、乘方的混合运算.三、例、习题的意图分析1 P17 例 5 第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.2教材 P17 例 5 中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学
16、生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点. 四、课堂引入计算下列各题:(1) = =( ) (2) = =( ) 2)(ba 3)(ba(3) = =( ) 4提问由以上计算的结果你能推出 (n 为正整数)的结果吗?ba)(五、例题讲解(P17)例 5.计算分析第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.六、随堂练习1判断下列各式是否成立,并改正.(1) = (2) = 23)(ab5 2)3(ab49(3) = (4) =3xy98x2x2计算(1) (2) (3) )5(y2)(cba3223)()(xayy(4) 5)32zx 42x