1、中考数学复习系列资料1学习总结:中考几何题证明思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的“因为“、“所以“ 逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的基本证明题做了一个较为全面的思路总结。 一、证明两线段相等 相关图形 证明两线段相等 原理等于同一线段的两条线段相等 等量代换线段垂直平分线上任意一点到线段两段距离相等线公共边相等 隐含条件角 角平分线上任一点到角的两边距离相等同一三角形中等角对等边 等角对等边等腰三角形等腰三角形顶角的平分
2、线或底边的高平分底边三线合一直角三角形 直角三角形斜边的中点到三顶点距离相等三角形全等三角形 两全等三角形中对应边相等平行四边形矩形 对角线相等菱形 四边相等平行四边形正方形对边相等且对角线互相平分 对角线相等且四边相等平行四边形性质两腰相等梯形 等腰梯形对角线相等等弧所对的弦相等 等弧对等弦与圆心等距的两弦相等 等弦心距对等弦同圆(或等圆)等圆心角、圆周角所对的弦相等 等角对等弦圆外一点引圆的两条切线的切线长相等 切线长定理圆垂直于直径的弦被直径分成的两段相等。垂径定理中考数学复习系列资料2二、证明两角相等 相关图形 证明两角相等 原理两条平行线的同位角、内错角相等线角平分线平分的两角相等对
3、顶角相等 隐含条件等于同一角的两个角相等 等量代换角同角(或等角)的余角(或补角)相等。 等量代换同一三角形中等边对等角 等边对等角等腰三角形等腰三角形中,底边上的中线(或高)平分顶角三线合一直角三角形 直角三角形斜边的中点到三顶点距离相等全等三角形 两全等三角形的对应角相等三角形相似三角形 两相似三角形的对应角相等平行四边形矩形 四个内角都是 90菱形 四个内角被对角线平分平行四边形正方形对角相等有 8 个 90和 8 个 45角平行四边形性质梯形 等腰梯形 两个上底角、两个下底角相等等弦所对的圆心角、圆周角相等 等弦对等角等弧所对的圆心角、圆周角相等 等弧对等角同圆(或等圆)弦切角等于它所
4、夹的弧对的圆周角 弦切角定理圆圆的内接四边形的外角等于内对角(对角互补)三、证明两直线平行 相关图形 证明两直线平行 原理平行于同一直线的两直线平行。线垂直于同一直线的各直线平行角 同位角相等,内错角相等或同旁内角互补的两直线平行三角形的中位线平行且等于底边的一半 中位线定理三角形相似三角形 一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。平行四边形 对边平行上下两底平行梯形梯形的中位线平行于两底,并且等于两 中位线定理中考数学复习系列资料3底和的一半 L=(a+b)2 S=Lh四、证明两直线互相垂直或一角是 90相关图形 证明两直线互相垂直或一角是 90 原理
5、一条直线垂直于平行线中的一条,则必垂直于另一条线到一线段两端的距离相等的点在线段的垂直平分线上角 等于同一角的两个角相等 等量代换在一个三角形中,若有两个角互余,则第三个角是直角等量代换(凑角)等腰三角形 等腰三角形的顶角平分线或底边的中线垂直于底边。 三线合一三角形中一边的中线若等于这边一半,则这一边所对的角是直角直角三角形利用勾股定理的逆定理 勾股定理三角形相似三角形 两相似三角形的对应角相等矩形 四个内角都是 90菱形 菱形的对角线互相垂直平行四边形正方形 有 8 个 90和 8 个 45角平行四边形性质在圆中平分弦(或弧)的直径垂直于弦 垂径定理圆 同圆(或等圆) 直径所对的圆周角是直
6、角特别的,证明直线与圆相切常用等量代换、凑角为 90等方法五、证明线段的和、差、倍、分 1.作两条线段的和,证明与第三条线段相等。 2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。 3.延长短线段为其二倍,再证明它与较长的线段相等。 4.取长线段的中点,再证其一半等于短线段。 5.利用一些定理(三角形的中位线、含 30 度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等) 。六、证明角的和、差、倍、分 1.作两个角的和,证明与第三角相等。 2.作两个角的差,证明余下部分等于第三角。 3.利用角平分线的定义。 中考数学复习系列资料44.三角形的一个外角
7、等于和它不相邻的两个内角的和。七、证明两线段不等 1.同一三角形中,大角对大边。 2.垂线段最短。 3.三角形两边之和大于第三边,两边之差小于第三边。 4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。5.同圆或等圆中,弧大弦大,弦心距小。 6.全量大于它的任何一部分。 八、证明两角不等 1.同一三角形中,大边对大角。 2.三角形的外角大于和它不相邻的任一内角。 3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。 4.同圆或等圆中,弧大则圆周角、圆心角大。 5.全量大于它的任何一部分。九、证明比例式1.利用相似三角形对应线段成比例。 2.利用内外角平分线定理。 3.平行线截线段成比例。 以上九项是中考几何证明题中最常出现的基本证明思路的总结,但这些思路仅能称为某种“固定的套路” 。几何证明题需要学生具有严密的逻辑思维。考试是活的,知识点和套路是死的,学生只有掌握了对应的方法,再根据题目中的条件进行合理选择,才能顺利把题目攻破。