1、课程标准(2011 年版)的通知各省、自治区、直辖市教育厅(教委) ,新疆生产建设兵团教育局:2012 年,国家启动了新世纪基础教育课程改革。经过十年的实践探索,课程改革取得显著成效,构建了有中国特色、反映时代精神、体现素质教育理念的基础教育课程体系,各学科课程标准得到中小学教师的广泛认同。同时,在课程标准执行过程中,也发现一些标准的内容、要求有待调整和完善。为贯彻落实国家中长期教育改革和发展规划纲要(2010-2020年) ,适应新时期全面实施素质教育的要求,深化基础教育课程改革,提高教育质量,我部组织专家对义务教育各学科课程标准进行了修订完善。根据教育部基础教育课程教材专家咨询委员会的咨询
2、意见和教育部基础教育课程教材专家工作委员会的审议结果,经研究,决定正式印发义务教育语文等学科课程标准(2011 年版) ,并于 2012 年秋季开始执行。现就修订后的课程标准在执行中的有关要求通知如下:1全面加强学习培训工作。各地要把修订后的课程标准的学习培训活动作为深入推进课程改革的重要契机,认真组织开展覆盖义务教育阶段所有学校校长、教师和教研人员的全员培训,帮助他们全面理解、深入领会和准确把握修订后课程标准的精神实质和主要变化,切实把课程标准的教育理念和基本要求全面落实到课堂教学中。2深入推进教学改革。课程标准是教学的主要依据。各地要引导广大教师严格依据课程标准组织教学,合理把握教学容量和
3、难度要求,调整教学观念和教学行为,重视激发学生学习的主动性和积极性,控制好课业负担,不断提高教学质量和水平。要充分整合专业资源,建立专家咨询和指导系统,围绕课程标准实施的重点、难点问题开展深入的教学研究和实践探索,特别要加强对农村地区学校的跟踪指导和专业支持。3.积极推进评价考试制度改革。各地要引导学校进行教学评价改革,强化评价在教学诊断和促进学生发展中的积极作用。要以课程标准为依据确定科学的评价标准,尤其要重视基础知识与基本技能、过程与方法、情感态度和价值观等课程目标的全面落实。改进评价方式和方法,注重过程性评价。严格按照课程标准命题,加强试题与社会实际和学生经验的有机联系,在注重对基础知识
4、和基本技能考查的同时,特别重视对具体情景中综合运用知识分析和解决问题能力以及实践能力的考查。4.加强课程资源建设。各地要结合本地区实际,做好课程资源开发利用的整体规划,有机统整学校、社会、网络等方面有益的课程资源,为教师深入开展教学改革创造有利条件。要鼓励和引导教师根据教学实际需要,创造性地开发并合理利用课程资源,不断丰富教学内容,激发教学活力。5.加强组织领导。全面落实义务教育各学科课程标准是贯彻落实教育规划纲要任务要求、深化基础教育课程改革、全面推进素质教育的重要举措,是促进学生健康成长、提高义务教育质量的重要保障,各地要充分重视,统筹规划,全面做好动员、宣传和培训工作,切实解决好师资、实
5、验仪器设施设备配备等条件保障,确保义务教育各学科课程标准的全面落实。初中数学课程标准(2011 年版)目 录第一部分 前 言 .3一、课程性质 .3二、课程基本理念 .3三、课程设计思路 .4第二部分 课程 目标 .7一、总目标 .7二、学段目标 .8第三部分 内容标 准 .9第三学段(79 年级) .9一、数与代数 .9二、图形与几何 .12三、统计与概率 .17四、综合与实践 .18第四部分 实施建议 .19一、教学建议 .19二、评价建议 .25三、教材编写建议 .30四、课程资源开发与利用建议 .35附 录 .37附录 1 有关行为动词的分类 .37附录 2 内容标准及实施建议中的实例
6、 .38第一部分 前言数学是研究数量关系和空间形式的科学。数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。特别是 20 世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学
7、在培养人的理性思维和创新能力方面的不可替代的作用。一、课程性质义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。二、课程基本理念1数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。2课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,
8、也包括数学结果的形成过程和蕴涵的数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。课程内容的组织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。3教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。学生学习应当是一个生动活
9、泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。4学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程
10、;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。5信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。三、课程设计思路义务教育阶段数学课程的设计,充分考虑本阶段学生数学学习的特点,符合学生的认知规律和心理特征,有利
11、于激发学生的学习兴趣,引发数学思考;充分考虑数学本身的特点,体现数学的实质;在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。按以上思路具体设计如下。(一) 学段划分为了体现义务教育数学课程的整体性,统筹考虑九年的课程内容。同时,根据学生发展的生理和心理特征,将九年的学习时间划分为三个学段:第一学段(13 年级) 、第二学段(4 6 年级) 、第三学段(7 9 年级) 。(二) 课程目标义务教育阶段数学课程目标分为总目标和学段目标,从知识技能、数学思考、问题解决、情感态度等四个方面加以阐述。数学课程目标包括结
12、果目标和过程目标。结果目标使用“了解、理解、掌握、运用”等术语表述,过程目标使用“经历、体验、探索”等术语表述(术语解释见附录 1) 。(三) 课程内容在各学段中,安排了四个部分的课程内容:“数与代数” “图形与几何” “统计与概率”“综合与实践” 。 “综合与实践”内容设置的目的在于培养学生综合运用有关的知识与方法解决实际问题,培养学生的问题意识、应用意识和创新意识,积累学生的活动经验,提高学生解决现实问题的能力。“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。“图形与几何”的主要内容有:空间和平面基本图
13、形的认识,图形的性质、分类和度量;图形的平移、旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标描述图形的位置和运动。“统计与概率”的主要内容有:收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。在学习活动中,学生将综合运用“数与代数” “图形与几何” “统计与概率”等知识和方法解决问题。 “综合与实践”的教学活动应当保证每学期至少一次,可以在课堂上完成,也可以课内外相结合。在数学课程中,应当
14、注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位
15、和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。数据分析观念包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。运算能力主要是指能够根据法则和运
16、算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,合情推理用于探索思路,发现结论;演绎推理用于证明结论。模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从
17、现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。应用意识有两个方面的含义,一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。 创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出
18、问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。第二部分 课程目标一、总目标通过义务教育阶段的数学学习,学生能:1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。总目标从以下四个方
19、面具体阐述:知识技能经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能。经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能。参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验。数学思考建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维与抽象思维。体会统计方法的意义,发展数据分析观念,感受随机现象。在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己
20、的想法。学会独立思考,体会数学的基本思想和思维方式。问题解决初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力。获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。学会与他人合作交流。初步形成评价与反思的意识。情感态度积极参与数学活动,对数学有好奇心和求知欲。在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。体会数学的特点,了解数学的价值。养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯,形成实事求是的科学态度。总目标的这四个方面,不是相互独立和割裂的,而是一个密切联系、相互交融的有机整体。在
21、课程设计和教学活动组织中,应同时兼顾这四个方面的目标。这些目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展有着重要的意义。数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现。 二、学段目标第一学段(13 年级)略第二学段(46 年级)略第三学段(79 年级)知识技能1体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,掌握用代数式、方程、不等式、函数进行表述的方法。2探索并掌握相交线、平行线、三角形、四边形和圆的基本性质
22、与判定,掌握基本的证明方法和基本的作图技能;探索并理解平面图形的平移、旋转、轴对称;认识投影与视图;探索并理解平面直角坐标系,能确定位置。3体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程;进一步认识随机现象,能计算一些简单事件的概率。数学思考1通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型的思想,建立符号意识;在研究图形性质和运动、确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。2了解利用数据可以进行统计推断,发展建立数据分析观念;感受随机现象的特点。3体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,
23、在多种形式的数学活动中,发展合情推理与演绎推理的能力。4能独立思考,体会数学的基本思想和思维方式。问题解决1初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。2经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。3在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。4能针对他人所提的问题进行反思,初步形成评价与反思的意识。情感态度1积极参与数学活动,对数学有好奇心和求知欲。 2感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。3在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。4敢于发表自己的想法、勇于质疑,养成认真勤奋、独立思考、合作交流等学习习惯,形成实事求是的科学态度。第三部分 内容标准第一学段(13 年级)略第二学段(46 年级)略第三学段(79 年级)一、数与代数(一)数与式1有理数(1 )理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。(2 )借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道a的含义(这里 a 表示有理数) 。