1、1/13小学及小升初复习专题-圆与求阴影部分面积目标:通过专题复习,加强学生对于图形面积计算的灵活运用。并加深对面积和周长概念的理解和区分。面积求解大致分为以下几类:1、 从整体图形中减去局部;2、 割补法,将不规则图形通过割补,转化成规则图形。重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。例 1.求阴影部分的面积。(单位:厘米)例 2.正方形面积是 7 平方厘米,求阴影部分的面积。(单位:厘米)例 3.求图中阴影部分的面积。(单位 :厘米) 例 4.求阴影部分的面积。(单位:厘米 )例 5.求阴影部分的面积。(单位:
2、厘米 ) 例 6.如图:已知小圆半径为 2 厘米,大圆半径是小圆的 3 倍,问:空白部分甲比乙的面积多多少厘米?2/13例 7.求阴影部分的面积。(单位:厘米 ) 例 8.求阴影部分的面积。(单位:厘米)例 9.求阴影部分的面积。(单位:厘米 ) 例 10.求阴影部分的面积。(单位:厘米)例 11.求阴影部分的面积。(单位:厘米) 例 12.求阴影部分的面积。(单位:厘米)例 13.求阴影部分的面积。(单位:厘米) 例 14.求阴影部分的面积。(单位:厘米)3/13例 15.已知直角三角形面积是 12 平方厘米,求阴影部分的面积。例 16.求阴影部分的面积。(单位:厘米)例 17.图中圆的半径
3、为 5 厘米,求阴影部分的面积。 (单位:厘米)例 18.如图,在边长为 6 厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。例 19.正方形边长为 2 厘米,求阴影部分的面积。 例 20.如图,正方形 ABCD 的面积是 36 平方厘米,求阴影部分的面积。4/13例 21.图中四个圆的半径都是 1 厘米,求阴影部分的面积。 例 22. 如图,正方形边长为 8 厘米,求阴影部分的面积。例 23.图中的 4 个圆的圆心是正方形的 4 个顶点,它们的公共点是该正方形的中心,如果每个圆的半径都是 1 厘米,那么阴影部分的面积是多少?例 24.如图,有 8 个半径为 1 厘米的小圆,用他们的圆
4、周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。如果圆周 率取 3.1416,那么花瓣图形的的面积是多少平方厘米?例 25.如图,四个扇形的半径相等,求阴影部分的面积。(单位:厘米)例 26.如图,等腰直角三角形 ABC 和四分之一圆DEB,AB=5 厘米,BE=2 厘米,求图中阴影部分的面积。5/13例 27.如图,正方形 ABCD 的对角线 AC=2 厘米,扇形 ACB是以 AC 为直径的半圆,扇形 DAC 是以 D 为圆心,AD 为半径的圆的一部分,求阴影部分的面积。例 28.求阴影部分的面积。(单位:厘米)例 29.图中直角三角形 ABC 的直角三角形的直角边 AB=4 厘米,B
5、C=6 厘米,扇形 BCD 所在圆是以 B 为圆心,半径为BC 的圆,CBD= ,问:阴影部分甲比乙面积小多少?例 30.如图,三角形 ABC 是直角三角形,阴影部分甲比阴影部分乙面积大 28 平方厘米,AB=40 厘米。求 BC 的长度。例 31.如图是一个正方形和半圆所组成的图形,其中 P 为半圆周的中点,Q 为正方形一边上的中点,求阴影部分的面积。例 32.如图,大正方形的边长为 6 厘米,小正方形的边长为4厘米。求阴影部分的面积。6/13例 33.求阴影部分的面积。(单位:厘米) 例 34.求阴影部分的面积。(单位:厘米)例 35.如图,三角形 OAB 是等腰三角形,OBC 是扇形,O
6、B=5 厘米,求阴影部分的面积。7/13举一反三巩固练习【专 1 】下图中,大小正方形的边长分别是 9 厘米和 5 厘米,求阴影部分的面积。【专 1-1】.右图中,大小正方形的边长分别是 12 厘米和 10 厘米。求阴影部分面积。【专 1-2】. 求右图中阴影部分图形的面积及周长。【专 2】已知右图阴影部分三角形的面积是 5 平方米,求圆的面积。【专 2-1】已知右图中,圆的直径是 2 厘米,求阴影部分的面积。8/13【专 2-2】求右图中阴影部分图形的面积及周长。【专 2-3】 求下图中阴影部分的面积。 (单位:厘米)【专 3】求下图中阴影部分的面积。【专 3-1】求右图中阴影部分的面积。【
7、专 3-2】求右图中阴影部分的面积。9/13【专 3-3】求下图中阴影部分的面积。10/13完整答案例 1 解:这是最基本的方法: 圆面积减去等腰直角三角形的面积, -21=1.14(平方厘米)例 2 解:这也是一种最基本的方法用正方形的面积减去 圆的面积。设圆的半径为 r,因为正方形的面积为 7 平方厘米,所以 =7,所以阴影部分的面积为:7- =7- 7=1.505 平方厘米例 3 解:最基本的方法之一。用四个 圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:22- 0.86 平方厘米。例 4 解:同上,正方形面积减去圆面积,16-( )=16-4=3.44 平方厘米例 5
8、解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形” ,是用两个圆减去一个正方形,( )2-16=8-16=9.12 平方厘米另外:此题还可以看成是 1 题中阴影部分的 8 倍。例 6 解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分) -( )=100.48 平方厘米 (注:这和两个圆是否相交、交的情况如何无关)例 7 解:正方形面积可用(对角线长对角线长2,求)正方形面积为:552=12.5所以阴影面积为: 4-12.5=7.125 平方厘米 (注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例 8 解:右面正方形上部阴影部分
9、的面积,等于左面正方形下部空白部分面积,割补以后为 圆,所以阴影部分面积为: ( )=3.14 平方厘米例 9 解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:23=6 平方厘米例 10 解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为 21=2 平方厘米(注: 8、9、10 三题是简单割、补或平移)例 11 解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求。( - ) = 3.14=3.66 平方厘米例 12. 解:三个部分拼成一个半圆面积( )14.13 平方厘米例 13 解: 连对角线后将“叶形“剪开移到右上面的空白部分,凑成正方形的一半.所以阴影部分面积为:882=32 平方厘米例 14 解:梯形面积减去 圆面积,(4+10)4- =28-4=15.44 平方厘米 . 例 15. 分析: 此题比上面的题有一定难度,这是“ 叶形“的一个半. 例 16 解: