复变函数与积分变换(修订版-复旦大学)课后的习题答案.doc

上传人:hw****26 文档编号:2201264 上传时间:2019-05-01 格式:DOC 页数:66 大小:3.56MB
下载 相关 举报
复变函数与积分变换(修订版-复旦大学)课后的习题答案.doc_第1页
第1页 / 共66页
复变函数与积分变换(修订版-复旦大学)课后的习题答案.doc_第2页
第2页 / 共66页
复变函数与积分变换(修订版-复旦大学)课后的习题答案.doc_第3页
第3页 / 共66页
复变函数与积分变换(修订版-复旦大学)课后的习题答案.doc_第4页
第4页 / 共66页
复变函数与积分变换(修订版-复旦大学)课后的习题答案.doc_第5页
第5页 / 共66页
点击查看更多>>
资源描述

1、复变函数与积分变换(修订版)课后答案(复旦大学出版社)1 / 66复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)课后习题答案 复变函数与积分变换(修订版)课后答案(复旦大学出版社)2 / 66习题一1. 用复数的代数形式 a+ib 表示下列复数./43513;(2)4;71iieii解 i42ecosinii4 解: 3517i613i7i+5解: 24i84i0i解: 311=iii22.求下列各复数的实部和虚部(z= x+iy)R); (za3331;.2niiz : 设 z=x+iy则 ,2iiiixayxyyayz 22Rezaxy2Imzxay解: 设 z=x+iy ,

2、323 22323iiiiiyxyxyx32Rezxy323Imzxy解: 2321ii 1280i8 , 1i3Re21i3Im02解: 33 21ii 8 180i复变函数与积分变换(修订版)课后答案(复旦大学出版社)3 / 66 , 1i3Re21i3Im02解: ,i 11iknnkA当 时, , ;2kReknImi0n当 时, , 1ni1k3.求下列复数的模和共轭复数 12;3(2);.2iii解: 2i415解: 33解: 2i2i51362i47 解: 1ii22iii4、证明:当且仅当 时,z 才是实数证明:若 ,设 ,zixy则有 ,从而有 ,即 y=0iixy20z=x

3、 为实数若 z=x,x A ,则 zx 命题成立5、设 z,wA,证明: zw证明 2zw22Rezwz复变函数与积分变换(修订版)课后答案(复旦大学出版社)4 / 6622zwz z6、设 z,wA,证明下列不等式 2 2Rezwz222wz并给出最后一个等式的几何解释证明: 在上面第五题的证明已经证明了2 2Rezzw下面证 w 2 2zzzw从而得证2Rezz 2w几何意义:平行四边形两对角线平方的和等于各边的平方的和7.将下列复数表示为指数形式或三角形式 3352;1;8(3);.cosin79ii解: 35i1i7其中 3816i98i7e5025i 8arctn19解: 其中 ei

4、2i解: ii1e解: .283163 iie解:32cosin9复变函数与积分变换(修订版)课后答案(复旦大学出版社)5 / 66解: 32cosin1932i.3i9sie8.计算:(1)i 的三次根;(2)-1 的三次根;(3) 的平方根.3ii 的三次根解: 133 22icosincosisn0,123kk 1ii6z 2531cosini62z391cosini6-1 的三次根解: 1332+1cosincosin0,123kk 1iiz2cosn1353ii2z 的平方根i解:i43i=6i6e2 1i42iecosin0,1kk 11i8446csin6e8z9i29oi 9.

5、设 . 证明:e,inz110nz证明: ,即 2in 110zz又n2 z1从而 21+n复变函数与积分变换(修订版)课后答案(复旦大学出版社)6 / 6611.设 是圆周 令:,0e.izracrc,:Im0zaLb其中 .求出 在 a 切于圆周 的关于 的充分必要条件 .eibL解:如图所示因为 =z: =0表示通过点 a 且方向与 b 同向的直线,要使得直线在 a 处与圆相切,则LImzabCA 过 C 作直线平行 ,则有BCD=,ACB=90L故 -=90所以 在 处切于圆周 T 的关于 的充要条件是 -=90L12.指出下列各式中点 z 所确定的平面图形,并作出草图.(1)arg;

6、23|;(4)ReIm512.ziz且解:(1)、argz=表示负实轴(2)、|z-1|=|z|表示直线 z= 12复变函数与积分变换(修订版)课后答案(复旦大学出版社)7 / 66(3)、1Imz解:表示直线 y=x 的右下半平面5、Imz1,且|z|2解:表示圆盘内的一弓形域。习题二1. 求映射 下圆周 的像.1wz|2z解:设 则i,ixyuv2221i()ixyyuv x因为 ,所以24xy53i4uiv复变函数与积分变换(修订版)课后答案(复旦大学出版社)8 / 66所以 ,54ux3vy534所以 即 ,表示椭圆.2534uv22531uv2. 在映射 下,下列 z 平面上的图形映

7、射为 w 平面上的什么图形,设 或 .2wz eiwiuv(1) ; (2) ;0,4r02,4r(3) x=a, y=b.(a, b 为实数 )解:设 i(iwuvxiyxy所以2,.(1) 记 ,则 映射成 w 平面内虚轴上从 O 到 4i 的一段,即ei02,4r04,.2(2) 记 ,则 映成了 w 平面上扇形域,即eiw0,24r 04,.2(3) 记 ,则将直线 x=a 映成了 即 是以原点为焦点,张口向左的wuiv2,.uayv224().au抛物线将 y=b 映成了 2,.xbvx即 是以原点为焦点,张口向右抛物线如图所示.224()vbu复变函数与积分变换(修订版)课后答案(

8、复旦大学出版社)9 / 663. 求下列极限.(1) ;21limz解:令 ,则 .t,0t于是 .2201lilizt(2) ;0Re()limz解:设 z=x+yi,则 有e()izxy00Re()1liliiizxykk显然当取不同的值时 f(z)的极限不同所以极限不存在.(3) ;2lim(1)zi解: = .2li()zi 1llim()()2zi zi(4) .21limz解:因为2(2)12,zz所以 .2113limlim2z z4. 讨论下列函数的连续性:(1) 复变函数与积分变换(修订版)课后答案(复旦大学出版社)10 / 662,0,()0;xyzfz解:因为 ,20(,

9、)0,limlizxyf若令 y=kx,则 ,22(,)0,li1xyk因为当 k 取不同值时,f(z)的取值不同,所以 f(z)在 z=0 处极限不存在 .从而 f(z)在 z=0 处不连续,除 z=0 外连续.(2)342,0,()0.xyzfz解:因为 ,33422xyx所以342(,)0,lim(0)xyf所以 f(z)在整个 z 平面连续.5. 下列函数在何处求导?并求其导数.(1) (n 为正整数 );1()nfz解:因为 n 为正整数,所以 f(z)在整个 z 平面上可导.1()fz(2) .2()()zf解:因为 f(z)为有理函数,所以 f(z)在 处不可导.2(1)0z从而 f(z)除 外可导.1,iz22232()()(1)(1)543(1)zzfz (3) .87fz解:f(z)除 外处处可导,且 .=5 223(57)(8)561) (7)zf z

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 课程笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。