1、1广东省 2017年中考数学真题试题一、选择题(本大题共 10小题,每小题 3分,共 30分)15 的相反数是( )A B5 C 15 D5【答案】D【解析】试题分析:根据相反数的定义有:5 的相反数是5故选 D考点:相反数2 “一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016 年广东省对沿线国家的实际投资额超过 4000000000美元,将 4000000000用科学记 数法表示为( )A0.410 9 B0.410 10 C410 9 D410 10【答案】C【解析】试题分析:4000000000=410 9故选 C考点:科学记数法表
2、示较大的数3已知 A=70,则 A的补角为( )A110 B70 C30 D20【答案】A考点:余角和补角4如果 2是方程 230xk的一个根,则常数 k的值为( )A1 B2 C1 D2【答案】B【解析】试题分析:2 是一元二次方程 230xk的一个根,2 232+ k=0,解得, k=2故选 B2考点:一元二次方程的解5在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是( )A95 B90 C85 D80【答案】B【解析】试题分析:数据 90出现了两次,次数最多,所以这组数据的众数是 90故选 B考点:众数6下列所
3、述图形中,既是轴对称图形又是中心对称图形的是( )A等边三角形 B平行四边形 C正五边形 D圆【答案】D考点:中心对称图形;轴对称图形7如图,在同一平面直角坐标系中,直线 1ykx( 0)与双曲 线 2kyx( 0)相交于 A, B两点,已知点 A的坐标为(1,2) ,则点 B的坐标为( )A (1,2) B (2,1) C (1,1) D (2,2)【答案】A【解析】试题分析:点 A与 B关于原点对称, B点的坐标为(1,2) 故选 A考点:反比例函数与一次函数的交点问题8下列运算正确的是( )3A 23a B 325a C 426()a D 424a【答案】B考点:幂的乘方与积的乘方;合并
4、同类项;同底数幂的乘法9如图,四边形 ABCD内接于 O, DA=DC, CBE=50,则 DAC的大小为( )A130 B100 C65 D50【答案】C【解析】试题分析: CBE=50, ABC=180 CBE=18050=130,四边形 ABCD为 O的内接四边形, D=180 ABC=180130=50, DA=DC, DAC=(180- D)2=65,故选 C考点:圆内接四边形的性质10如图,已知正方形 ABCD,点 E是 BC边的中点, DE与 AC相交于点 F,连接 BF,下列结论: S ABF=SADF; S CDF=4S CEF; S ADF=2S CEF; S ADF=2S
5、 CDF,其中正确的是( )4A B C D【答案】C考点:正方形的性质二、填空题(本大题共 6小题,每小题 4分,共 24分)11分解因式: a2= 【答案】 a( a+1) 【解析】试题分析: 2=a( a+1) 故答案为: a( a+1) 考点:因式分解提公因式法12一个 n边形的内角和是 720,则 n= 【答案】6【解析】试题分析:设所求正 n边形边数为 n,则( n2)180=720,解得 n=6考点:多边形内角与外角13已知实数 a, b在数轴上的对应点的位置如图所示,则 a+b 0 (填“” , “”或“=” )【答案】【解析】5试题分析: a在原点左边, b在原点右边, a0
6、 b, a离开原点的距离比 b离开原点的距离小, |a| b|, a+b0故答案为:考点:实数大小比较;实数与数轴14在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为 1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是 【答案】 25【解析】试题分析:5 个小球中,标号为偶数的有 2、4 这 2个,摸出的小球 标号为偶数的概率是 25,故答案为: 25考点:概率公式15已知 4a+3b=1,则整式 8a+6b3 的值为 【答案】1考点:代数式求值;整体思想16如图,矩形纸片 ABCD中, AB=5, BC=3,先按图(2)操作:将矩形纸片 ABCD沿过点 A的直线折
7、叠,使点 D落在边 AB上的点 E处,折痕为 AF;再按图(3)操作,沿过点 F的直线折叠,使点 C落在 EF上的点 H处,折痕为 FG,则 A、 H两点间的距离为 【答案】 10【解析】试题分析:如图 3中,连接 AH由题意可知在 Rt AEH中, AE=AD=3, EH=EF HF=32=1, AH=2AEH= 21= 0,故答案为: 106考点:翻折变换(折叠问题) ;矩形的性质;综合题三、解答题(本大题共 3小题,每小题 6分,共 18分)17计算: 1071【答案】9考点:实数的运算;零指数幂;负整数指数幂18先化简,再求值: 2142xx,其中 x= 5【答案】2 x, 25【解析
8、】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将 x的值代入求解可得试题解析:原式= 22xx=2x当 x= 5时,原式= 5考点:分式的化简求值19学校团委组织志愿者到图书馆整理一批新进的图书若男生每人整理 30本,女生每人整理 20本,共能整理 680本;若男生每人整理 50本,女生每人整理 40本,共能整理 1240本求男生、女生志愿者各有多少人?【答案】男生志愿者有 12人,女生志愿 者有 16人【解析】试题分析:设男生志愿者有 x人,女生志愿者有 y人,根据“若男生每人整理 30本,女生每人整理 20本,7共能整理 680本;若男生每人整理 50本,女生每人整理 40本
9、,共能整理 1240本” ,即可得出关于 x、 y的二元一次方程组,解之即可得出结论试题解析:设男生志愿者有 x人,女生志愿者有 y人,根据题意得: 302680541xy,解得:126xy答:男生志愿者有 12人,女生志愿者有 16人考点:二元一次方程组的应用四、解答题(本大题共 3小题,每小题 7分,共 21分)20如图,在 ABC中, A B(1)作边 AB的垂直平分线 DE,与 AB, BC分别相交于点 D, E(用尺规作图,保留作图痕迹,不要求写作法) ;(2)在(1)的条件下,连接 AE,若 B=50,求 AEC的度数【答案】 (1)作图见见解析;(2)100试题解析:(1)如图所
10、示;(2) DE是 AB的垂直平分线, AE=BE, EAB= B=50, AEC= EAB+ B=1008考点:作图基本作图;线段垂直平分线的性质21如图所示,已知四边形 ABCD, ADEF都是菱形, BAD= FAD, BAD为锐角(1)求证: AD BF;(2)若 BF=BC,求 ADC的度数【答案】 (1)证明见解析;(2)150试题解析:(1)证明:如图,连结 DB、 DF四边形 ABCD, ADEF都是菱形, AB=BC=CD=DA, AD=DE=EF=FA在 BAD与 FAD中, AB=AF, BAD= FAD, AD=AD, BAD FAD, DB=DF, D在线段 BF的垂
11、直平分线上, AB=AF, A在线段 BF的垂直平分线上, AD是线段 BF的垂直平分线, AD BF;(2)如图,设 AD BF于 H,作 DG BC于 G,则四边形 BGDH是矩形, DG=BH= 1BF BF=BC, BC=CD, DG= 12CD在直角 CDG中, CGD=90, DG= 12CD, C=30,9 BC AD, ADC=180 C=150考点:菱形的性质22某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表 组 边 体 重 ( 千克 ) 人 数 A 45
12、x 50 12 B 50 x 5 m C 5 x 60 80 D 60 x 65 40 E 65 x 70 16 (1)填空: m= (直接写出结果) ;在扇形统计图中, C组所在扇形的圆心角的度数等于 度;(2)如果该校九年级有 1000名学生,请估算九年级体重低于 60千克的学生大约有多少人?【答案】 (1)52;144;(2)72010试题解析:(1)调查的人数为:4020%=200(人) , m=20012804016=52; C组所在扇形的圆心角的度数为 802360=144;故答案为:52,144;(2)九年级体重低于 60千克的学生大约有 152801000=720(人) 考点:扇形统计图;用样本估计总体;频数(率)分布表五、解答题(本大题共 3小题,每小题 9分,共 27分)23如图,在平面直角坐标系中,抛物线 baxy2交 x轴于 A(1,0) , B(3,0)两点,点 P是抛物线上在第一象限内的一点,直线 BP与 y轴相交于点 C(1)求抛物线 baxy2的解析式;(2)当点 P是线段 BC的中点时,求点 P的坐标;(3)在(2)的条件下,求 sin OCB的值【答案】 (1) 243yx;(2) P的坐标为( 32, 4) ;(3) 52