1、流体力学实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线?答:测压管水头指 ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测pZ压管水头线指测压管液面的连线。从表 1.1 的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。2、 当 时,试根据记录数据确定水箱的真空区域。0Bp答:以当 时,第 2 次 B 点量测数据(表 1.1)为例,此时 ,相应0 06.cmpB容器的真空区域包括以下 3 三部分:(1)过测压管 2 液面作一水平面,由等压面原理知,相对测压管 2 及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的
2、水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小杯的液面作一水平面,测压管 4 中该平面以上的水体亦为真空区域。 (3)在测压管 5 中,自水面向下深度为的一段水注亦为真空区。这段高度与测压管 2 液面低于水箱液面的高度相等,0HAP亦与测压管 4 液面高于小水杯液面高度相等,均为 。0HAP3、 若再备一根直尺,试采用另外最简便的方法测定 。0答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管 5 油水界面至水面和油水界面至油面的垂直高度 和 ,由式 ,从而求得 。whoowho4、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细
3、现象而升高,造成测量误差,毛细高度由下式计算 dhcos4式中, 为表面张力系数; 为液体的容重; 为测压管的内径; 为毛细升高。常温 h( )的水, 或 , 。水与Ct20myn/28.7mN/073. 3/98.0mdyn玻璃的浸润角 很小,可认为 。于是有.1cosdh9h单 位 均 为、一般说来,当玻璃测压管的内径大于 10mm 时,毛细影响可略而不计。另外,当水质不洁时, 减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角 较大,其 较普通玻璃管小。h如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时。相互抵消了。5、
4、 过 C 点作一水平面,相对管 1、2、5 及水箱中液体而言,这个水平是不是等压面?哪一部分液体是同一等压面?答:不全是等压面,它仅相对管 1、2 及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列 5 个条件的平面才是等压面:(1) 重力液体;(2) 静止;(3) 连通;(4) 连通介质为同一均质液体;(5) 同一水平面而管 5 与水箱之间不符合条件(4) ,因此,相对管 5 和水箱中的液体而言,该水平面不是等压面。6、用图 1.1 装置能演示变液位下的恒定流实验吗?答:关闭各通气阀,开启底阀,放水片刻,可看到有空气由 C 进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察
5、可知,测压管 1 的液面始终与 C 点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的的降低与空气补充使箱体表面真空度的减小处于平衡状态。医学上的点滴注射就是此原理应用的一例,医学上称之为马利奥特容器的变液位下恒定流。7、该仪器在加气增压后,水箱液面将下降 而测压管液面将升高 H,实验时,若以时的水箱液面作为测量基准,试分析加气增压后,实际压强( )与视在压强0p H 的相对误差值。本仪器测压管内径为 0.8cm,箱体内径为 20cm。答:加压后,水箱液面比基准面下降了 ,而同时测压管 1、2 的液面各比基准面升高了H,由水量平衡原理有则 422DHd 2DdH本实验仪 , 故
6、 cm8.0c003.于是相对误差 有2.1H因而可略去不计。对单根测压管的容器若有 或对两根测压管的容器 时,便可使10dD7dD。01.(二)伯诺里方程实验1、 测压管水头线和总水头线的变化趋势有何不同?为什么?测压管水头线(P-P)沿程可升可降,线坡 JP 可正可负。而总水头线 (E-E)沿程只降不升,线坡 JP恒为正,即 J0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。如图所示,测点 5 至测点 7,管渐缩,部分势能转换成动能,测压管水头线降低,JP0。 ,测点 7 至测点 9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P0,故 E2恒小于E1, (E-
7、E)线不可能回升。 (E-E)线下降的坡度越大,即 J 越大,表明单位流程上的水头损失越大,如图上的渐扩段和阀门等处,表明有较大的局部水头损失存在。2、 流量增加,测压管水头线有何变化?为什么?1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头,任一断面起始的总水头 E 及管道过流断面面积 A 为定值时,2gAQEpZHpQ 增大, 就增大,则 必减小。而且随流量的增加,阻力损失亦增大,管道任一v2pZ过水断面上的总水头 E 相应减小,故 的减小更加显著。2)测压管水头线(P-P)的起落变化更为显著。因为对于两个不同直径的相应过水断面有 gAQgAQvgvpZHP 222
8、2121 221式中 为两个断面之间的损失系数。管中水流为紊流时, 接近于常数,又管道断面为定 值,故 Q 增大, 亦增大, 线的起落变化更为显著。HP3、 测点 2、3 和测点 10、11 的测压管读数分别说明了什么问题?测点 2、3 位于均匀流断面,测点高差 0.7cm, 均为 37.1cm(偶有毛细pZHP影响相差 0.1mm) ,表明均匀流各断面上,其动水压强按静水压强规律分布。测点 10、11在弯管的急变流断面上,测压管水头差为 7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力” ,而在急变流断面上其质量力,除重力外,尚有
9、离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点 10、11 应舍弃。4、试问避免喉管(测点 7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。下述几点措施有利于避免喉管(测点 7)处真空的形成:(1)减小流量, (2)增大喉管管径, (3)降低相关管线的安装高程, (4)改变水箱中的液位高度。显然(1) (2) (3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实际意义。因为若管系落差不变,单单降低管线位置往往就可以避免真空。例如可在水箱出口接一下垂 90 度的弯管,后接水平段,将喉管高程将至基准高程 0-0,比位能
10、降至零,比压能得以增大(Z) ,从而可能避免点 7 处的真空。至于措施(4)其增压效果是有条件的,p现分析如下:当作用水头增大 时,测点 7 断面上 值可用能量方程求得。hpZ取基准面及计算断面 1、2、3 如图所示,计算点选在管轴线上(以下水拄单位均为cm) 。于是由断面 1、2 的能量方程(取 )有132(1)2121 whgvpZh因 可表示成 21whdlcsew 32.132.121 此处 是管段 1-2 总水头损失系数,式中 、 分别为进口和渐缩局部损失系数。2.1ces又由连续方程有 gvdv2342故式(1)可变为 (2)gvhZpc23.142312 式中 可由断面 1、3
11、能量方程求得,即gv23(3)gvZhc23.1231是管道阻力的总损失系数。3.1c由此得 ,代入式(2)有3.13123/chgv(4)3.12.14212 cchZdZp随 递增还是递减,可由 加以判别。因2ZhpZ/2(5)3.1.432cp若 ,则断面 2 上的 随 同步递增。反之,01/13.2.423 ccdpZh则递减。文丘里实验为递减情况,可供空化管设计参考。因本实验仪 , , ,而当 时,实验的7.2351Z1030, , ,将各值代入式(2) 、 (3) ,可得该管62pZ9gv4.23gv道阻力系数分别为 , 。再将其代入式(5)得5.12.c37.1c026.42 h
12、pZ表明本实验管道喉管的测压管水头随水箱水位同步升高。但因 接近hpZ/2于零,故水箱水位的升高对提高喉管的压强(减小负压)效果不明显。变水头实验可证明结论正确。5、 毕托管测量显示的总水头线与实测绘制的总水头线一般都有差异,试分析其原因。与毕托管相连通的测压管有 1、6、8、12、14、16 和 18 管,称总压管。总压管液面的连线即为毕托管测量显示的总水头线,其中包含点流速水头。而实际测绘的总水头是以实测的 值加断面平均流速水头 绘制的。据经验资料,对于园管紊流,只有pZgv2在离管壁约 的位置,其点流速方能代表该断面的平均流速。由于本实验毕托管的探d12.0头通常布设在管轴附近,其点流速
13、水头大于断面平均流速水头,所以由毕托管测量显示的总水头线,一般比实际测绘的总水头线偏高。因此,本实验由 1、6、8、12、14、16 和 18 管所显示的总水头线一般仅供定性分析与讨论,只有按实验原理与方法测绘的总水头线才更准确。(五)雷诺实验1、流态判据为何采用无量纲参数,而不采用临界流速?雷诺在 1883 年以前的实验中,发现园管流动存在着两种流态层流和紊流,并且存在着层流转化为紊流的临界流速 , 与流体的粘性 、园管的直径 有关,既v d(1)df,因此从广义上看, 不能作为流态转变的判据。v为了判别流态,雷诺对不同管径、不同粘性液体作了大量的实验,得出了无量纲参数 作为管流流态的判据。
14、他不但深刻揭示了流态转变的规律。而且还为后人用无量/vd纲化的方法进行实验研究树立了典范。用无量纲分析的雷列法可得出与雷诺数结果相同的无量纲数。可以认为式(1)的函数关系能用指数的乘积来表示。即(2)21 adKv其中 为某一无量纲系数。K式(2)的量纲关系为(3)211aLTL从量纲和谐原理,得: 121: T1a联立求解得 ,12将上述结果,代入式(2) ,得或 (4)dKv dv雷诺实验完成了 值的测定,以及是否为常数的验证。结果得到 K=2320。于是,无量纲数 便成了适合于任何管径,任何牛顿流体的流态转变的判据。由于雷诺的贡献,/vd定名为雷诺数。随着量纲分析理论的完善,利用量纲分析
15、得出无量纲参数,研究多个物理量间的关系,成了现今实验研究的重要手段之一。2、为何认为上临界雷诺数无实际意义,而采用下临界雷诺数作为层流和紊流的判据?实测下临界雷诺数为多少?根据实验测定,上临界雷诺数实测值在 30005000 范围内,与操作快慢,水箱的紊动度,外界干扰等密切相关。有关学者做了大量试验,有的得 12000,有的得 20000,有的甚至得40000。实际水流中,干扰总是存在的,故上临界雷诺数为不定值,无实际意义。只有下临界雷诺数才可以作为判别流态的标准。凡水流的雷诺数小于下临界雷诺数者必为层流。本实验实测下临界雷诺数为 2178。3、雷诺实验得出的园管流动下临界雷诺数为 2320,
16、而且前一般教科书中介绍采用的下临界雷诺数是 2000,原因何在?下临界雷诺数也并非与干扰绝对无关。雷诺实验是在环境的干扰极小,实验前水箱中的水体经长时间的稳定情况下,经反复多次细心量测才得出的。而后人的大量实验很难重复得出雷诺实验的准确数值,通常在 20002300 之间。因此,从工程实用出发,教科书中介绍的园管下临界雷诺数一般是 2000。4、试结合紊动机理实验的观察,分析由层流过渡到紊流的机理何在?从紊动机理实验的观察可知,异重流(分层流)在剪切流动情况下,分界面由于扰动引发细微波动,并随剪切流动的增大,分界面上的波动增大,波峰变尖,以至于间断面破裂而形成一个个小旋涡。使流体质点产生横向紊
17、动。正如在大风时,海面上波浪滔天,水气混掺的情况一样,这是高速的空气和静止的海水这两种流体的界面上,因剪切流动而引起的界面失稳的波动现象。由于园管层流的流速按抛物线分布,过流断面上的流速梯度较大,而且因壁面上的流速恒为零。相同管径下,如果平均流速越大,则梯度越大,即层间的剪切流速越大,于是就容易产生紊动。紊动机理实验所见到的波动 破裂 旋涡 质点紊动等一系列现象,便是流态从层流转变成紊流的过程显示。5、分析层流和紊流在运动学特性和动力学特性方面各有何差异?层流和紊流在运动学特性和动力学特性方面的差异如下表:运动学特性 动力学特性层流 1、 质点有规律地作分层流动2、 断面流速按抛物线分布3、
18、运动要素无脉动现象1、 流层间无质量传输2、 流层间无动量交换3、 单位质量的能量损失与流速的一次方成正比紊流 1、 质点相互混掺作无规则运动2、 断面流速按指数规律分布3、 运动要素发生不规则的脉动现象1、 流层间有质量传输2、 流层间存在动量交换3、 单位质量的能量损失与流速的(1.752)次方成正比(六)文丘里流量计实验1、 本实验中,影响文丘里管流量系数大小的因素有哪些?哪个因素最敏感?对本实验的管道而言,若因加工精度影响,误将 ( d2-0.01) cm 值取代上述 d2值时,本实验在最大流量下的 值将变为多少?答:由式 得1/244211dhgdQ4可见本实验(水为流体)的 值大小
19、与 、 、 、 有关。其中 、 影响最敏感。Q12h1d2本实验的文氏管 , ,通常在切削加工中 比 测量方便,容易cmd4.1cd7.02掌握好精度, 不易测量准确,从而不可避免的要引起实验误差。例如本实验最大流量时2值为 0.976,若 的误差为-0.01cm ,那么 值将变为 1.006,显然不合理。2、 为什么计算流量 Q与实际流量 Q 不相等?答:因为计算流量 Q是在不考虑水头损失情况下,即按理想液体推导的,而实际流体存在粘性必引起阻力损失,从而减小过流能力, ,即 。0.13、 试应用量纲分析法,阐明文丘里流量计的水力特性。答:运用量纲分析法得到文丘里流量计的流量表达式,然后结合实
20、验成果,便可进一步搞清流量计的量测特性。对于平置文丘里管,影响 的因素有:文氏管进口直径 ,喉径 、流体的密度 、1v1d2动力粘滞系数 及两个断面间的压强差 。根据 定理有p(1)0212 dvf、 从中选取三个基本量,分别为:01MTL1v103共有 6 个物理量,有 3 个基本物理量,可得 3 个无量纲 数,分别为:1121/cbavd2212/cbavd333p根据量纲和谐原理, 的量纲式为1113cbaMLTL分别有 : 11: 0b: 1c联解得: , , ,则1a1, 同理 , 12d12vd213vp将各 值代入式(1)得无量纲方程为0)(2112vpf,或写成)(1221vd
21、fpv,)(/)(/ 123121 ee RfpgRdfv 、, 进而可得流量表达式为(2))(241231efhQ、(3))(/41221 dgd相似。为计及损失对过流量的影响,实际流量在式(3)中引入流量系数 计算,变为Q(4)1)(/24421dhgdQ比较(2) 、 (4)两式可知,流量系数 与 一定有关,又因为式(4)中 的函数QeR12d关系并不一定代表了式(2)中函数 所应有的关系,故应通过实验搞清 与 、3f QeR的相关性。1d通过以上分析,明确了对文丘里流量计流量系数的研究途径,只要搞清它与 、e的关系就行了。12由本实验所得在紊流过渡区的 关系曲线( 为常数) ,可知 随
22、 的QeR12dQeR增大而增大,因恒有 ,故若使实验的 增大, 将渐趋向于某一小于 1 的常数。1Q另外,根据已有的很多实验资料分析, 与 也有关,不同的 值,可以122d得到不同的 关系曲线,文丘里管通常使 。所以实用上,对特定的文丘QeRd里管均需实验率定 的关系,或者查用相同管径比时的经验曲线。还有实用上较适宜于被测管道中的雷诺数 ,使 值接近于常数 。5102eQ98.0流量系数 的上述关系,也反映了文丘里流量计的水力特性。Q4、文丘里管喉颈处容易产生真空,允许最大真空度为 6-7mH2O。工程中应用文氏管时,应检验其最大真空度是否在允许范围内。据你的实验成果,分析本实验流量计喉颈最
23、大真空值为多少?答:本实验 , ,以管轴线高程为基准面,以水箱液面和喉道断面cmd4.1cd71.02分别为 1-2 和 2-2 计算断面,立能量方程得2120whgvpH则 2102102 wwhgvvp21whOcmHp2.5即本实验最大流量时,文丘里管喉颈处真空度 ,而由实验实测为OcmHhv25。OcmH25.60进一步分析可知,若水箱水位高于管轴线 4m 左右时,本实验装置中文丘里管喉颈处的真空度可达 。OmH27(八)局部阻力实验1、结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系。由式 gvhj2及 )(1df表明影响局部阻力损失的因素是 和 ,由于有v21d突扩:
24、 )(Ae突缩: 5.021s则有 21215.0)(AAKes 当 5.021或 7d时,突然扩大的水头损失比相应突然收缩的要大。在本实验最大流量 Q 下,突扩损失较突缩损失约大一倍,即 。 接近于 1 时,突扩的水流形态817.60.3/54jseh2d接近于逐渐扩大管的流动,因而阻力损失显著减小。 2.结合流动演示仪的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失?流动演示仪 I-VII 型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十余种内、外流的流动图谱。据此对局部阻力损失的机理分析如下:从显示的图谱可见,凡流道边界突
25、变处,形成大小不一的旋涡区。旋涡是产生损失的主要根源。由于水质点的无规则运动和激烈的紊动,相互摩擦,便消耗了部分水体的自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就造成了局部阻力损失。从流动仪可见,突扩段的旋涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,旋涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的旋涡在收缩断面前后均有。突缩前仅在死角区有小旋涡,且强度较小,而突缩的后部产生了紊动度较大的旋涡环区。可见产生突缩水头损失的主要部位是在突缩断面后。从以上分析知。为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或尽量接近流线型,以避免旋涡的形成,或使旋涡区尽可能小。如欲减小本实验管道的