1、第六单元百分数一、百分数的意义和写法(一) 、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。(二) 、百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系。区别:、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位; 分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除 0 以外的自然数。3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。二、百分数和分数、小数的互化(一) 百分数与小数的互化
2、:1、小数化成百分数:把小数点向右移动两位(数位不够用 0 补足) ,同时在后面添上百分号。2. 百分数化成小数:把小数点向左移动两位(数位不够用 0 补足) ,同时去掉百分号。(二) 百分数的和分数的互化1、百分数化成分数:先把百分数改写成分母是 100 的分数,能约分要约成最简分数。2、分数化成百分数: 用分数的基本性质,把分数分母扩大或缩小成分母是 100 的分数,再写成百分数形式。先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 (建议用这种方法)(三) 常见分数小数百分数之间的互化; 三、用百分数解决问题(一) 一般应用题1、常见的百分率的计算方法:一般来讲,出勤
3、率、成活率、合格率、正确率能达到 100%,出米率、出油率达不到 100%,完成率、增长了百分之几等可以超过 100%。 2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。例如:例如:男生有 20 人,女生有 15 人,女生人数占男生人数的百分之几。列式是:1520=15/20=75 3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:(1)百分率前是“的”: 单位“1”的量百分率= 百分率对应量(2 百分率前是“多或少”的数量关系: 单位“1”的量(1百分率)= 百分率对应量4、未知单位“1”的量(用除法)
4、,已知单位“1”的百分之几是多少,求单位“1” 。 方法与分数的方法相同。解法: (1)方程: 根据数量关系式设未知量为 X,用方程解答。(2)算术( 用除法) : 百分率对应量对应百分率 = 单位“1”的量5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;百分率前是“多或少”的关系式: (比少):具体量 (1-百分率)= 单位“1”的量;例如:大米有 50 千克,比面粉树少 50,面粉有多少千克。列式是:50(1-50)(比多):具体量 (1+百分率)= 单位“1”的量例如:工人做 110 个零件,比原计划多做了 10,
5、原计划做多少个?列式是:110(1+10)6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。用两个数的相差量单位“1”的量 =百分之几即求一个数比另一个数多百分之几:用(大数小数) 另一个数(比那个数就除以那个数) ,结果写为百分数形式。甲比乙多几分之几的问题,方法 A, (甲-乙)乙 (建议用) 方法 B,甲乙-100 例如:老师计划改 40 本作业,实际改了 50 本,实际比计划多改了百分之几?列式是:(5040)40=0.25=25求一个数比另一个数少几分之几:用(大数小数) 另一个数(比那个数就除以那个数) ,结果写为百分数形式。乙比甲少几分之几的问题,方法 A,(甲-乙)甲(建议用) 方法 B, 100-乙甲例如:张三家用了 100 度电,李四家用了 90 度电,李四家比张三家少用百分之几?(10090)100=0.1=10说明:多百分之几不等于少百分之几,因为单位一不同。7、如果甲比乙多或少 a,求乙比甲少或多百分之几,用a(1 a)求价格先降 a又上升 a后的价格: 1(1-a)(1+a) (假设原来的价格为“1” 。求变化幅度(求降价后的价格是涨价后价格的百分之几)用 1-降价后又上升的百分率。