考研数学三大公式.doc

上传人:sk****8 文档编号:2272277 上传时间:2019-05-03 格式:DOC 页数:24 大小:1.42MB
下载 相关 举报
考研数学三大公式.doc_第1页
第1页 / 共24页
考研数学三大公式.doc_第2页
第2页 / 共24页
考研数学三大公式.doc_第3页
第3页 / 共24页
考研数学三大公式.doc_第4页
第4页 / 共24页
考研数学三大公式.doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、 高等数学公式导数公式:基本积分表:axaxxln1)(logcots)(canesot)(an2 221)cot(arn1)(cosarinxxxCaxaxdCshcxadCxxddxCxx )ln(lncscotseaneotsi anecco2222CaxxadaxaxdCxxdCrcsinl21lnrct1oslncstaecesilotoa22Caxxadxa axaxdaxIndInnn rcsin22l)l(221cossi2 22 22020三角函数的有理式积分: 222 11cos1sin udxtguxux , , , 和差角公式: 和差化积公式:倍角公式:半角公式: co

2、s1insico12cots1insicoc12tan sssi 正弦定理: 余弦定理: RCBbAa2iinsi Cab22反三角函数性质: xrcxxx tnarctnarcosrci 2sini2cosco2sin2sincoicot1t)cot(an1ansicos)cs(ii 233tan13tancos4cosiii22 222tan1tacotc sicosin1sscini高阶导数公式莱布尼兹(Leibniz)公式: )()()2()1()(0)()( !)1()! nknnnnnkk uvuknvuvuCv 中值定理与导数应用: 拉 格 朗 日 中 值 定 理 。时 , 柯

3、西 中 值 定 理 就 是当柯 西 中 值 定 理 :拉 格 朗 日 中 值 定 理 :xFfabfab)(F)()( )多元函数微分法及应用zyzx yxxyxyxFzyxF dFdddyvdvyudxvxzuxzfz tvtdttvu xffzdzududyxzd , , 隐 函 数 , , 隐 函 数隐 函 数 的 求 导 公 式 : 时 ,当 :多 元 复 合 函 数 的 求 导 法全 微 分 的 近 似 计 算 : 全 微 分 : 0),( )()(,),(),()(, ),(),(2多元函数的极值及其求法: 不 确 定时 值时 , 无 极为 极 小 值为 极 大 值时 ,则 : ,

4、 令 :设 ,0),( ),(,),(,),(0),(),(202 0000BACyxA CyxfByxfAffyxf xy常数项级数: 是 发 散 的调 和 级 数 :等 差 数 列 :等 比 数 列 : nqqnn13212)(112 级数审敛法: 散 。存 在 , 则 收 敛 ; 否 则 发、 定 义 法 : 时 , 不 确 定时 , 级 数 发 散时 , 级 数 收 敛, 则设 :、 比 值 审 敛 法 : 时 , 不 确 定时 , 级 数 发 散时 , 级 数 收 敛, 则设 : 别 法 ) :根 植 审 敛 法 ( 柯 西 判、 正 项 级 数 的 审 敛 法 nnnnsusUul

5、im;31li21lim211 。的 绝 对 值其 余 项, 那 么 级 数 收 敛 且 其 和如 果 交 错 级 数 满 足 莱 布 尼 兹 定 理 :的 审 敛 法或交 错 级 数1113243 ,0li )0,( nnn n urrusuu绝对收敛与条件收敛: 时 收 敛 时 发 散 级 数 : 收 敛 ; 级 数 : 收 敛 ;发 散 , 而调 和 级 数 : 为 条 件 收 敛 级 数 。收 敛 , 则 称发 散 , 而如 果 收 敛 级 数 ;肯 定 收 敛 , 且 称 为 绝 对收 敛 , 则如 果 为 任 意 实 数 ;, 其 中1)1(1)()2()1(232pnpnnuun

6、 幂级数: 01)3(lim)3(111 1121032 RaaRRxxaxaxx nnnn 时 ,时 ,时 ,的 系 数 , 则是, 其 中求 收 敛 半 径 的 方 法 : 设 称 为 收 敛 半 径 。, 其 中时 不 定时 发 散时 收 敛, 使在数 轴 上 都 收 敛 , 则 必 存 收 敛 , 也 不 是 在 全, 如 果 它 不 是 仅 在 原 点 对 于 级 数 时 , 发 散时 , 收 敛 于 函数展开成幂级数: nnn nnxfxffxfx RffR xfxfxxf !)0(!2)0()(0)(0 lim,()!1 )(!)(!2)()10( 00)(2000时 即 为 麦

7、 克 劳 林 公 式 : 充 要 条 件 是 :可 以 展 开 成 泰 勒 级 数 的余 项 :函 数 展 开 成 泰 勒 级 数 :一些函数展开成幂级数: )()!12()!53sin )1(1)(1)( 2 xnxxx nmmm 欧拉公式: 2sincosincoixiixiix exe 或微分方程的相关概念:即 得 齐 次 方 程 通 解 。 ,代 替分 离 变 量 , 积 分 后 将, 则设 的 函 数 , 解 法 :, 即 写 成程 可 以 写 成齐 次 方 程 : 一 阶 微 分 方 称 为 隐 式 通 解 。 得 : 的 形 式 , 解 法 :为: 一 阶 微 分 方 程 可 以

8、 化可 分 离 变 量 的 微 分 方 程 或 一 阶 微 分 方 程 : uxyudxudxuxdyxu xyyfyCxFGdxfg dxfgyQdyPyf )()(,)()()( )()(0,),( 一阶线性微分方程: )1,0()(2 )0)(, )(1 )()(nyxQPdxy eCdxeQCxxyPdx dxPPd,、 贝 努 力 方 程 :时 , 为 非 齐 次 方 程 ,当 为 齐 次 方 程 ,时当、 一 阶 线 性 微 分 方 程 :全微分方程: 通 解 。应 该 是 该 全 微 分 方 程 的 , 其 中 : 分 方 程 , 即 :中 左 端 是 某 函 数 的 全 微如

9、果 Cyxu yxQuyxPyxdP),( ),(),(0),(,)(二阶微分方程: 时 为 非 齐 次时 为 齐 次, 0)()()(2 xfyxQdPx二阶常系数齐次线性微分方程及其解法: 212,)(2 ,(*)0)(1,0(*)r yrqpqyp式 的 两 个 根、 求 出 的 系 数 ;式 中的 系 数 及 常 数 项 恰 好 是, 其 中、 写 出 特 征 方 程 :求 解 步 骤 : 为 常 数 ;, 其 中 式 的 通 解 :出的 不 同 情 况 , 按 下 表 写、 根 据 (*),321r的 形 式,1r(*)式的通解两个不相等实根 )04(2qp xrxrecy21两个相

10、等实根 r1)(21一对共轭复根 )(2241pqpirir, , )sinco2xeyx二阶常系数非齐次线性微分方程 型为 常 数 ;型 , 为 常 数, sin)(cos)()(,xPxexffylm线 性 代 数 公 式 大 全 最 新 修 订1、 行 列 式1. 行列式共有 个元素,展开后有 项,可分解为 行列式;n2n!n2n2. 代数余子式的性质:、 和 的大小无关;ijAija、某行(列)的元素乘以其它行(列)元素的代数余子式为 0;、某行(列)的元素乘以该行(列)元素的代数余子式为 ;A3. 代数余子式和余子式的关系: (1)(1)ij ijiji ijiMAM 4. 设 行列

11、式 :nD将 上、下翻转或左右翻转,所得行列式为 ,则 ;1D(1)21nD将 顺时针或逆时针旋转 ,所得行列式为 ,则 ;90 2()2将 主对角线翻转后(转置),所得行列式为 ,则 ;33将 主副角线翻转后,所得行列式为 ,则 ;D445. 行列式的重要公式:、主对角行列式:主对角元素的乘积;、副对角行列式:副对角元素的乘积 ;(1)2n、上、下三角行列式( ):主对角元素的乘积; 、 和 :副对角元素的乘积 ; (1)2n、拉普拉斯展开式: 、AOCABB(1)mnOABC:、范德蒙行列式:大指标减小指标的连乘积;、特征值;6. 对于 阶行列式 ,恒有: ,其中 为 阶主子式;nA1()

12、nknESkS7. 证明 的方法:0、 ;、反证法;、构造齐次方程组 ,证明其有非零解;0Ax、利用秩,证明 ;()rn、证明 0 是其特征值;2、 矩 阵1. 是 阶可逆矩阵:An(是非奇异矩阵);0(是满秩矩阵)()r的行(列)向量组线性无关;齐次方程组 有非零解;0x, 总有唯一解;nbRAb与 等价;E可表示成若干个初等矩阵的乘积;的特征值全不为 0;是正定矩阵;T的行(列)向量组是 的一组基;AnR是 中某两组基的过渡矩阵;nR2. 对于 阶矩阵 : 无条件恒成立;*AE3. 1*111*()()()TTA A *11TBBB4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可

13、求代数和;5. 关于分块矩阵的重要结论,其中均 、 可逆:若 ,则:12sA、 ;12、 ;1121sA、 ;(主对角分块)11OB、 ;(副对角分块)1A、 ;(拉普拉斯)11CCBOB、 ;(拉普拉斯)111AOA3、 矩 阵 的 初 等 变 换 与 线 性 方 程 组1. 一个 矩阵 ,总可经过初等变换化为标准形,其标准形是唯一确定的: ;mnA rmnEOF等价类:所有与 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵 、 ,若 ;B()rAB:2. 行最简形矩阵:、只能通过初等行变换获得;、每行首个非 0 元素必须为 1;、每行首个非 0 元素所在

14、列的其他元素必须为 0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)、 若 ,则 可逆,且 ;(,)(,)rAEX:A1XA、对矩阵 做初等行变化,当 变为 时, 就变成 ,即: ;BEB1A 1(,),)cBEA、求解线形方程组:对于 个未知数 个方程 ,如果 ,则 可逆,且 ;nxb(,)rbx:1xb4. 初等矩阵和对角矩阵的概念:、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;、 ,左乘矩阵 , 乘 的各行元素;右乘, 乘 的各列元素; 12nAiiA、对调两行或两列,符号 ,且 ,例如: ;(,)Eij1(,)(,)ijEij1、倍乘某行或某列,符号 ,且 ,例如: ;()ik1()()iki1(0)kk、倍加某行或某列,符号 ,且 ,如: ;()Eijk1()()ijEijk1(0)k5. 矩阵秩的基本性质:、 ;0()min(,)rA、 ;T、若 ,则 ;B:()r、若 、 可逆,则 ;(可逆矩阵不影响矩阵的秩)PQ()()rPAQrPA、 ;()ax(),(,AB

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。