高中数学必修1-5知识点.doc

上传人:hw****26 文档编号:2314353 上传时间:2019-05-06 格式:DOC 页数:29 大小:2.21MB
下载 相关 举报
高中数学必修1-5知识点.doc_第1页
第1页 / 共29页
高中数学必修1-5知识点.doc_第2页
第2页 / 共29页
高中数学必修1-5知识点.doc_第3页
第3页 / 共29页
高中数学必修1-5知识点.doc_第4页
第4页 / 共29页
高中数学必修1-5知识点.doc_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、高一数学必修 1 知识网络集合12341 2nxABABn( ) 元 素 与 集 合 的 关 系 : 属 于 ( ) 和 不 属 于 ( )( ) 集 合 中 元 素 的 特 性 : 确 定 性 、 互 异 性 、 无 序 性集 合 与 元 素 ( ) 集 合 的 分 类 : 按 集 合 中 元 素 的 个 数 多 少 分 为 : 有 限 集 、 无 限 集 、 空 集( ) 集 合 的 表 示 方 法 : 列 举 法 、 描 述 法 ( 自 然 语 言 描 述 、 特 征 性 质 描 述 ) 、 图 示 法 、 区 间 法子 集 : 若 , 则 , 即 是 的 子 集 。、 若 集 合 中

2、有 个 元 素 , 则 集 合 的 子 集 有 个 , 注关 系集 合 集 合 与 集 合 0 (2-1)23, ,.4/ nCCAABxBBAxA 真 子 集 有 个 。、 任 何 一 个 集 合 是 它 本 身 的 子 集 , 即 、 对 于 集 合 如 果 , 且 那 么、 空 集 是 任 何 集 合 的 ( 真 ) 子 集 。真 子 集 : 若 且 ( 即 至 少 存 在 但 ) , 则 是 的 真 子 集 。集 合 相 等 : 且 定 义 : 且交 集 性 质 : , , ,运 算 ,/()()()-()/ ()()UUUUUABBBCardABardCardxAACAC ,定 义

3、: 或并 集 性 质 : , , , , , 定 义 : 且补 集 性 质 : , , , , ()()函数 ,AB Axy fBBxyxfy yxy映 射 定 义 : 设 , 是 两 个 非 空 的 集 合 , 如 果 按 某 一 个 确 定 的 对 应 关 系 , 使 对 于 集 合 中 的 任 意 一 个 元 素 , 在 集 合 中 都 有 唯 一 确 定 的 元 素 与 之 对 应 , 那 么 就 称 对 应 : 为 从 集 合 到 集 合 的 一 个 映 射传 统 定 义 : 如 果 在 某 变 化 中 有 两 个 变 量 并 且 对 于 在 某 个 范 围 内 的 每 一 个 确

4、定 的 值 ,定 义 按 照 某 个 对 应 关 系 都 有 唯 一 确 定 的 值 和 它 对 应 。 那 么 就 是 的 函 数 。 记 作函 数 及 其 表 示函 数 ()., ,()()(), ,1212()() , ,fxabaxbfxfxfxababff ab近 代 定 义 : 函 数 是 从 一 个 数 集 到 另 一 个 数 集 的 映 射 。定 义 域函 数 的 三 要 素 值 域 对 应 法 则解 析 法函 数 的 表 示 方 法 列 表 法图 象 法单 调 性函 数 的 基 本 性 质 传 统 定 义 : 在 区 间 上 , 若 如 , 则 在 上 递 增 是 递 增 区

5、 间 ; 如 , 则 在 上 递 减 是 的 递 减 区 间 。导 数 定 义 : 在 区 间 () 1 ()2 () ()00, 0() ()0() ,yfxI MxIfxMxIfxMyff abfxfabab 最 大 值 : 设 函 数 的 定 义 域 为 , 如 果 存 在 实 数 满 足 : ( ) 对 于 任 意 的 , 都 有 ; ( ) 存 在 , 使 得 。 则 称 是 函 数 的 最 大 值最 值 最 上 , 若 , 则 在 上 递 增 ,是 递 增 区 间 ; 如 则 在 上 递 减 是 的 递 减 区 间 。 () ()() ()(1)()(), ()2f I N IfN

6、IfNfxfxfxDfx 小 值 : 设 函 数 的 定 义 域 为 , 如 果 存 在 实 数 满 足 : ( ) 对 于 任 意 的 , 都 有 ; ( ) 存 在 , 使 得 。 则 称 是 函 数 的 最 小 值定 义 域 , 则 叫 做 奇 函 数 , 其 图 象 关 于 原 点 对 称 。奇 偶 性 定 义 域 , 则 叫 做 偶 函 数 , 其 图() ()()0)()()1 , ()12 yfx fxTfxTfx TTfxyxaxyfxaa 象 关 于 轴 对 称 。 奇 偶 函 数 的 定 义 域 关 于 原 点 对 称周 期 性 : 在 函 数 的 定 义 域 上 恒 有

7、的 常 数 则 叫 做 周 期 函 数 , 为 周 期 ; 的 最 小 正 值 叫 做 的 最 小 正 周 期 , 简 称 周 期( ) 描 点 连 线 法 : 列 表 、 描 点 、 连 线向 左 平 移 个 单 位 :向 右 平 移 个平 移 变 换函 数 图 象 的 画 法 ( ) 变 换 法 , ()1 1011/ ()01)bxbbfyyxxwwwxwyfxyAA单 位 :向 上 平 移 个 单 位 :向 下 平 移 个 单 位 :横 坐 标 变 换 : 把 各 点 的 横 坐 标 缩 短 ( 当 时 ) 或 伸 长 ( 当 时 ) 到 原 来 的 倍 ( 纵 坐 标 不 变 ) ,

8、 即伸 缩 变 换 纵 坐 标 变 换 : 把 各 点 的 纵 坐 标 伸 长 ( 或 缩 短 ( 到/()122100(,) 2(2)0 001()12(0 022010 Ayyfxxxxy yfxyyyfxyxxy yfyyy 原 来 的 倍 ( 横 坐 标 不 变 ) , 即关 于 点 对 称 :关 于 直 线 对 称 :对 称 变 换 关 于 直 线 对 称 : )1()xfx 关 于 直 线 对 称 :附:一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于 1;5、三角函数正切函数 中

9、tanyx;余切函数 中;6、如果函数是由实际意义确定的解析式,应()2xkZcotyx依据自变量的实际意义确定其取值范围。二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、 单调性法;7、直接法四、函数的最值的常用求法:1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常用结论:1、若 均为某区间上的增(减)函数,则 在这个区间上也为增(),fxg()fxg(减)函数2、若 为增(减)函数,则 为减(增)函数()f

10、()fx3、若 与 的单调性相同,则 是增函数;若 与 的单xg()yfgx()fxg调性不同,则 是减函数。()yfx4、奇函数在对称区间上的单调 性相同,偶函数在 对称区间 上的单调性相反。5、常用函数的单调性解答:比 较大小、求 值域、求最值、解不等式、证不等式、作函数图象。六、函数奇偶性的常用结论:1、如果一个奇函数在 处 有定义, 则 ,如果一个函数 既是奇0x(0)f()yfx函数又是偶函数,则 (反之不成立)()f2、两个奇(偶)函数之和(差)为 奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4、两个函数 和 复合而成的函数,只要其中有一个是偶函

11、数,那么()yfu()gx该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。5、若函数 的定义域关于原点 对称, 则 可以表示 为()fx()fx,该式的特点是:右端为一个奇函数和11()()()22fxfxfx一个偶函数的和。 , ()0 ()(), ()()0, (,)0,()0yfxfxxyfxfab fafbyfx cabfccfxf 零 点 : 对 于 函 数 ( ) 我 们 把 使 的 实 数 叫 做 函 数 的 零 点 。定 理 : 如 果 函 数 在 区 间 上 的 图 象 是 连 续 不 断 的 一 条 曲 线 , 并 且 有零 点 与 根 的 关 系 那 么

12、 , 函 数 在 区 间 内 有 零 点 。 即 存 在 使 得 这 个 也 是 方 程 的 根 。 ( 反 之 不 成 立 )关 系 : 方 程函 数 与 方 程函 数 的 应 用 () ()(1),()()0,2(,);(3)()0,(), (,)0()()0,yfxyfxxabfafbcfcf cfaf bcxabfcfba有 实 数 根 函 数 有 零 点 函 数 的 图 象 与 轴 有 交 点确 定 区 间 验 证 给 定 精 确 度 ;求 区 间 的 中 点计 算 ;二 分 法 求 方 程 的 近 似 解 若 则 就 是 函 数 的 零 点 ; 若 则 令 ( 此 时 零 点 )

13、; 若 则 令 ( 此 时 零 点 (,)(4) -, ();24cb ab ) ;判 断 是 否 达 到 精 确 度 : 即 若 则 得 到 零 点 的 近 似 值 或 否 则 重 复 。几 类 不 同 的 增 长 函 数 模 型函 数 模 型 及 其 应 用 用 已 知 函 数 模 型 解 决 问 题建 立 实 际 问 题 的 函 数 模 型 ,(0,)(),(1)1lo mnaanarsrsQbbxyaax 根 式 : 为 根 指 数 , 为 被 开 方 数分 数 指 数 幂指 数 的 运 算指 数 函 数 性 质定 义 : 一 般 地 把 函 数 且 叫 做 指 数 函 数 。指 数

14、函 数 性 质 : 见 表对 数 :基 本 初 等 函 数 对 数 的 运 算对 数 函 数 g,()llog;l .l;(0,1,0,)ogl()1caNMNnaMyxbcb为 底 数 , 为 真 数性 质 换 底 公 式 :定 义 : 一 般 地 把 函 数 且 叫 做 对 数 函 数对 数 函 数 性 质 : 见 表 且yx 幂 函 数 定 义 : 一 般 地 , 函 数 叫 做 幂 函 数 , 是 自 变 量 , 是 常 数 。性 质 : 见 表 2表1 指数函数 0,1xya对数数函数 log0,1ayxa定义域R,值域 0,yyR图象过定点 (0,1) 过定点 (1,0)减函数 增

15、函数 减函数 增函数(,0)(,)xy时 ,时 , ,(0,1)xy时 ,时 , ,(,)xy时 ,时 , (,(,0)xy时 ,时 ,性质 abababab表 2 幂函数 ()yxRpq0111pq为 奇 数为 奇 数奇函数pq为 奇 数为 偶 数pq为 偶 数为 奇 数偶函数第一象限性质 减函数 增函数过定点 01( , )高中数学必修 2 知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与 x 轴平行或重合时,我们规定它的倾斜角为 0 度。因此,倾斜角的取值范围是 0180(2)直线的斜率定义 :倾斜角不是 90的直线,它的

16、倾斜角的正切叫做这条直线的斜率。直 线的斜率常用k 表示。即 。斜率反映直 线与轴的倾斜程度。tank当 时, ; 当 时, ; 当 时, 不存在。90,180,9k9k过两点的直线的斜率公式: )(212xxyk注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为 90;1(2)k 与 P1、P 2 的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程点斜式: 直线斜率 k,且 过点)(11xky1,yx注意:当直线的斜率为 0时,k=0,直线的方程是 y=y1。当直线的斜率为 90时,

17、直线的斜率不存在,它的方程不能用点斜式表示但因 l 上每一点的横坐标都等于 x1,所以它的方程是 x=x1。斜截式: ,直线斜率为 k,直 线在 y 轴上的截距 为 bbky两点式: ( )直线两点 ,1122212,1,2,yx截矩式: xab其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。l(0)ay(0)blxy,ab一般式: (A,B 不全为 0)CByA注意: 各式的适用范 围 特殊的方程如:1 2平行于 x 轴的直线: (b 为常数); 平行于 y 轴的直线: (a 为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线 (

18、是不全为 0 的常数)的直线系:00yx0,(C 为常数)0yBxA(二)过定点的直线系()斜率为 k 的直 线系: ,直 线过定点 ;00xk0,yx()过两条直线 , 的交点的直线系方程:11yxl :22CBAl为( 为参数),其中直线 不在直线系中。221 CBACyBxAl(6)两直线平行与垂直当 , 时,1:bkl:bxkyl;2221,/1221l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点相交0:11CyBxAl 0:22CyBxAl交点坐标即方程组 的一组解。1方程组无解 ; 方程组有无数解 与 重合21/l1l2(8)两点间距离公式:设

19、是平面直角坐标系中的两个点,12(,),xy, ( )则 2|AB(9)点到直线距离公式:一点 到直线 的距离0,P0:1CByAxl 20BACyxd(10)两平行直线距离公式在任一直线上任取一点,再转 化为点到直线的距离进行求解。二、圆的方程1、圆的定义:平面内到一定点的距离等于定 长的点的集合叫 圆,定点 为圆心,定长为圆的半径。2、圆的方程(1)标准方程 ,圆心 ,半径为 r;22rbyaxba,(2)一般方程 0FED当 时,方程表示圆,此 时圆心为 ,半径为042FED2,EDFEDr4212当 时,表示一个点; 当 时,方程不表示任何图形。042F(3)求圆方程的方法:一般都采用

20、待定系数法:先设后求。 确定一个圆需要三个独立条件,若利用圆的标准方程,需求出 a,b,r;若利用一般方程,需要求出 D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线 ,圆 ,圆心 到 l 的距离为0:CByAxl 22:rbyaxbaC,,则有 ; ;2bad相 离与lrd相 切与ld相 交与rd(2)设直线 ,圆 ,先将方程联立消元,得到一个:l 22:一元二次方程之后,令其中的判别式为 ,则有; ;相 离与0相 切与l0相 交与l0注:如果圆

21、心的位置在原点,可使用公式 去解直线与圆相切的问题,其中2ryx表示切点坐标,r 表示半径。,yx(3)过圆上一点的切线方程:圆 x2+y2=r2,圆上一点为(x 0,y0),则过此点的切线方程 为 (课本命题)20ryx圆(x-a) 2+(y-b)2=r2,圆上一点为(x 0,y0),则过此点的切线方程为(x 0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广)4、圆与圆的位置关系:通过两 圆半径的和(差),与 圆心距( d)之间的大小比较来确定。设圆 ,2121:rbyaxC222: RbyaxC两圆的位置关系常通过两圆半径的和(差),与 圆心距(d)之 间的大小比较来确

22、定。当 时两圆外离,此时有公切线四条;rRd当 时两圆外切,连心线过切点,有外公切 线两条,内公切线一条;当 时两圆相交, 连心线垂直平分公共弦,有两条外公切线;当 时,两圆内切,连心线经过切点,只有一条公切线;rRd当 时,两圆内含; 当 时,为同心圆。0d三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱 或用 对角线的端点字母,如五棱柱EDCBAAD几何特征:两底面是对应边平行的全等

23、多边形;侧面、 对角面都是平行四 边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱 锥等表示:用各顶点字母,如五棱锥 EDCBAP几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于 顶点到截面距离与高的比的平方。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台 几何特征: 上下底面是相似的

24、平行多边形 侧面是梯形 侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征: 底面是全等的 圆; 母线与轴平行;轴与底面 圆的半径垂直;侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征: 底面是一个 圆; 母线交于圆锥的顶点;侧 面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征: 上下底面是两个圆; 侧面母线交于原圆锥的顶点; 侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半 圆面旋 转一

25、周形成的几何体几何特征: 球的截面是 圆; 球面上任意一点到球心的距离等于半径。2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。3、空间几何体的直观图斜二 测画法斜二测画法特点:原来与 x轴平行的线段仍然与 x 平行且长度不变;原来与 y轴 平行的线段仍然与 y 平行, 长度为原来的一半。4、柱体、锥体、台体的表面积与体积(1)几何体的

26、表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c 为底面周长, h 为高, 为斜高,l 为母线)hS直 棱 柱 侧 面 积 rS2圆 柱 侧 21chS正 棱 锥 侧 面 积 rlS圆 锥 侧 面 积)(21c正 棱 台 侧 面 积 lR)(圆 台 侧 面 积lr圆 柱 表 r圆 锥 表 22Rlr圆 台 表(3)柱体、锥体、台体的体积公式VSh柱 2Shr圆 柱 13VSh锥 hV231圆 锥1()3台 ()()r圆 台(4)球体的表面积和体积公式:V = ; S =球 34R球 面 24R4、空间点、直线、平面的位置关系(1)平面 平面的概念: A.描述性说明; B.平面是无

27、限伸展的; 平面的表示:通常用希腊字母 、 表示,如平面 (通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面 BC。 点与平面的关系:点 A 在平面 内, 记作 ;点 不在平面 内, 记作AA点与直线的关系:点 A 的直线 l 上, 记作:A l; 点 A 在直线 l 外,记作 A l;直线与平面的关系:直线 l 在平面 内, 记作 l ;直线 l 不在平面 内, 记作 l 。(2)公理 1:如果一条直线的两点在一个平面内,那么 这条直 线是所有的点都在这个平面内。(即直线在平面内,或者平面经过 直线)应用:检验桌面是否平; 判断直线是否在平面内用符号语言表示公理 1: ,AlBl(3)公理 2:经过不在同一条直线上的三点,有且只有一个平面。推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。公理 2 及其推论作用:它是空间内确定平面的依据 它是证明平面重合的依据

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。