高中数学必背公式大全docx.doc

上传人:hw****26 文档编号:2315218 上传时间:2019-05-06 格式:DOC 页数:7 大小:43KB
下载 相关 举报
高中数学必背公式大全docx.doc_第1页
第1页 / 共7页
高中数学必背公式大全docx.doc_第2页
第2页 / 共7页
高中数学必背公式大全docx.doc_第3页
第3页 / 共7页
高中数学必背公式大全docx.doc_第4页
第4页 / 共7页
高中数学必背公式大全docx.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b| -|a| a|a|一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac0注:方程有两个不等的实根 b2-4ac0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c

2、*h 斜棱柱侧面积 S=c*h 正棱锥侧面积 S=1/2c*h正棱台侧面积 S=1/2(c+c)h 圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a 是圆心角的弧度数 r 0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=SL注:其中,S是直截面面积, L 是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h;定理:1 过两点有且只有一条直线 2 两点之间线段最短 3 同角

3、或等角的补角相等 4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于18018 推论 1 直角三角形的两个锐角互

4、余 19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等28 定理 2 到一个角的两边的距

5、离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角 )31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论 3 等边三角形的各角都相等,并且每一个角都等于 6034 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论 1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于 60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于 30那么它所

6、对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理 1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理 直角三角形两

7、直角边 a、b 的平方和、等于斜边 c 的平方,即 a2+b2=c247 勾股定理的逆定理 如果三角形的三边长 a、b、c 有关系 a2+b2=c2 ,那么这个三角形是直角三角形48 定理 四边形的内角和等于 360 49 四边形的外角和等于 360 50 多边形内角和定理 n 边形的内角的和等于(n-2) 18051 推论 任意多边的外角和等于 360 52 平行四边形性质定理 1 平行四边形的对角相等53 平行四边形性质定理 2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等55 平行四边形性质定理 3 平行四边形的对角线互相平分 56 平行四边形判定定理 1 两组对角分

8、别相等的四边形是平行四边形57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理 1 矩形的四个角都是直角61 矩形性质定理 2 矩形的对角线相等 62 矩形判定定理 1 有三个角是直角的四边形是矩形63 矩形判定定理 2 对角线相等的平行四边形是矩形 64 菱形性质定理 1 菱形的四条边都相等65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即 S=(ab)2 67 菱形判定

9、定理 1 四边都相等的四边形是菱形68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理 1 关于中心对称的两个图形是全等的72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等76 等腰梯形判定定理 在同一底上的两个角

10、相等的梯形是等腰梯形 ;77 对角线相等的梯形是等腰梯形78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第 三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)2 S=Lh83 (1)比例的基本性质 如果 a:b=c:d,那么 ad=bc如果 ad=bc,那么 a:b=c:d wc 呁 /S ?84 (2)合比性质

11、如果 a/b=c/d,那么(ab)/b=(cd)/d85 (3)等比性质 如果 a/b=c/d=m/n(b+d+n0),那么(a+c+m)/(b+d+n)=a/b86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理 如果一条直线截三角形的两边( 或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理 平行于三角形一边的直线和其他两边( 或两边的延长线)相交,所

12、构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理 3 三边对应成比例,两三角形相似(SSS)95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比97 性质定理 2 相似三角形周长的比等于相似比98 性质定理 3 相似三角形面积的比等于相似比的平方99 任意

13、锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

14、离相等的一条直线109 定理 不在同一直线上的三点确定一个圆。110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论 1 平分弦 (不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 推论 2 圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理 一条弧所对的圆周角等于它所对的圆心角的一半117 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118 推论 2 半圆(或直径)所对的圆周角是直角;90的圆周角所 对的弦是直径119 推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角121直线 L 和O 相交 d直线 L 和O 相切 d=r直线 L 和O 相离 dr

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。