1、 机械 优化 设计报告 姓名 : 刘洋 学号 : S12080203054 院系: 机械工程学院 专业: 机械设计及理论 2012 年 12 月 4 日 机械优化设计报告 2 摘 要 最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业 、国防、建筑、同学、政府机关等各个部门及各个领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中, MATLAB 软件已经成为最优化领域应用最广的软件之一。有了 MATLAB这个强大的计算平台,既可以利用 MATLAB 优化工具
2、箱( OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。 关键词:优化、黄金分割法、 最速下降法、 MATLAB、算法 Abstract Optimization theory and methods and more attention, have penetrated into the production, management, business, military, decision-making and other fields, and optimization models and methods widely used in indus
3、try, agriculture, transportation, commerce, defense, construction, students, government various departments and agencies and other fields. With the rapid development of computer technology, 机械优化设计报告 3 optimization theory and methods for the rapid progress of the optimization problem to solve practic
4、al software is also developing rapidly. Which, MATLAB software has become the most optimization software is one of the most widely used. With this powerful computing platform MATLAB, either using MATLAB optimization toolbox (OptimizationToolbox) in the function, but also can achieve the appropriate
5、algorithm to optimize into the calculation. Key words: Optimization、 Golden section method、 steepest descent method、MATLAB、 algorithm 机械优化设计报告 4 目 录 摘要 . 2 第一章 绪论 . 5 第二章 黄金分割法的基本思想与原理 . 6 2.1 黄金分割法的基本 思路 . 6 2.2 算法流程图 . 7 2.3 用 matlab 编写源程序 . 7 2.4 黄金分割法应用举例 . 8 第三章 最速下降法 的基本思想与原理 . 9 3.1 最速下降法 的基本
6、 思路 . 9 3.2 算法流程图 . 11 3.3 用 matlab 编写源程序 . 11 3.4 最速下降法 应用举例 . 13 第 四 章 惩罚函数法 的基本思想与原理 . 13 4.1 惩罚函数法 的基本 思路 . 13 4.2 算法流程图 . 14 4.3 用 matlab 编写源程序 . 14 4.4 最速下降法 应用举例 . 16 第五章 总结 . 17 参考文献 . 18 机械优化设计报告 5 第 1 章 绪论 在人类活动中,要办好一件事(指规划、设计等),都期望得到最满意、最好的结果或效果。为了实现这种期望,必须有好的预测和决策方法。方法对头,事半功倍,反之则事倍功半。优化方
7、法就是各类决策方法中普遍采用的一种方法。 历史上最早记载下来的最优化问题可追溯到古希腊的欧几里得( Euclid, 公元前300 年左右),他指出:在周长相同的一切矩形中,以正方形的面积为最大。十七、十八世纪微积分的建立给出了求函数极值的一些准则,对最优化的研究提供了某些理论基础。然而,在以后的两个世纪中,最优化技术的进展缓慢,主要考虑了有约束条件的最优化问题,发展了一套变分方法。 六十年代以来,最优化技术进入了蓬勃发展的时期,主要是近代科学技术和生产的迅速发展,提出了许多用经典最优化技术无法解决的最优化问题。为了取得重大的解决与军事效果,又必将解决这些问题,这种客观需要极大地推动了最优化的研
8、究与应用。另一方面,近代科学, 特别是数学、力学、技术和计算机科学的发展,以及专业理论、数学规划和计算机的不断发展,为最优化技术提供了有效手段。 现在,最优化技术这门较新的科学分支目前已深入到各个生产与科学领域,例如:化学工程、机械工程、建筑工程、运输工程、生产控制、经济规划和经济管理等,并取得了重大的经济效益与社会效益。 机械 优化设计 是最优化技术在机械设计领域的移植和应用 ,其基本思想是根据机械设计的理论 ,方法和标准规范等建立一反映工 程设计问题和符合数学规划要求的数学模型 ,然后采用数学规划方法和计算机计算技术自动找出设计问题的最优方案 ,求解优化问题可以采用解析法,也可以采用数值法
9、。 由于数值法可用于求复杂函数的优化解,也可以用于处理没有数学解析表达式的优化设计问题,因此它是实际问题中常用的解法,很受重视。 机械优化设计报告 6 第 2 章 黄金分割法的基本思想与原理 2.1 黄金分割法 的 基本 原理与步骤 一 维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法( 0.618 法)。该方法用不变 的区间缩短率 0.618 代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。 黄金分割法是用于一元函数 f(x)在给定初始区间 a,b内搜索极小点 xmi
10、n的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数,即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照 “ 去劣存优 ” 原则、对称原则、以及等比收缩原则来逐步缩小搜索区间。具体步骤是:在区间 a,b内取点: a1 , a2 把 a,b分为三段。 如果 f(a1)f(a2),令 a=a1,a1=a2,a2=a+0.618*(b-a); 如果 f(a1)=eps%循环条件 ,eps为收敛精度 if y1=y2%比较插入点的函数值的大小 a=a1;%缩短搜索区间 a1=a2; y1=y2; 机械优
11、化设计报告 8 a2=a+0.618*(b-a); y2=f(a2); else b=a2; a2=a1; y2=y1; a1=b-0.618*(b-a); y1=f(a1); end k=k+1; end%停止迭代 x=(a+b)/2;%取最后两点的平均值作为极小点的数值近似解 fval=f(x); fprintf(k=n);%显示迭代次数 disp(k); end 2.4 黄金分割法应用举例 例 1 根据 0.618 算法编写程序,求函数 36102 ttf(t) 在区间 10,0 上的极大值。 解: 程序为: z=(t) t2-10*t+36;x,fval=golden(z,0,10,1
12、0-6) 运行结果: k= 34 机械优化设计报告 9 t = 5.0000 fval = 11.0000 说明最小值点为 5*t ,最小值为 11)( * tf ,迭代次数为 34 第 3 章 最速下降法 的基本思想与原理 3.1 最速下降 法基本思路 最速下降法的搜索法向是目标函数的负梯度方向,最速下降法从目标函数的负梯度方向一直前进,直到到达目标函数的最低点。 已知目标函数在 ()kX 点的梯度为: ( ) ( ) ( )()12.Tk k kknf X f X f XfXx x x 当求目标函数的最小点时,由于函数沿负梯度方向下降最快,故在 ()kX 点的探索方向应取该点的负梯度方向,
13、即 机械优化设计报告 10 ()()()kkkfXSfX显然, ()kS 为单位向量。这样第 1k 次迭代计算所得的新点为 ( ) ( )( 1 ) ( ) ( ) ( ) ( )()kkk k k k kkfXX X S XfX 负梯度仅给出了最优化方向,而没有给出步长的大小,所以可能有各种各样的最速下降的过 程,它们依赖于 ()()kkfX 的大小。 步长 ()k 有两种取法: 一种方法是任意给定一个初始步长,使满足条件: ( ) ( ) ( ) ( )( ) ( )k k k kf X S f X 另外一种方法是沿负梯度方向做一维探索,以求解一维最优化问题的最优步长 ,即对目标函数极小,
14、以得到最优步长: ( ) ( ) ( ) ( ) ( )0m i n ( ) ( )k k k k kf X S f X S 以此最优步长作为由 ()kX 点出发沿该点的负梯度方向探索的步长 ()k 。 这种方法的迭代计算的收敛性,可用以下三式中的任一式或二式作为准则来进行判断: ()1( ) ( 1 )2()( ) ( 1 )3kkkkkkfXf X f XfXXX 用最速下降法求无约束多维极值问题 min ( ), nf x x R 的算法步骤如下: ( 1) 取初始点 (0)x ,精度 0 , 令 0k ( 2) 计算搜索方向 ( ) ( )()kkv f x ,其中 ()kfx 表示函数 ()fx在点 ()kx 处的梯度; ( 3) 若 ()kv ,则停止计算;否则,从 ()kx 出发,沿 ()kv 进行一维搜索,即求 k ,使得 ( ) ( ) ( ) ( )0( ) m i n ( )k k k kkf x v f x v 。此处的一维搜索可以用黄金分割法等算法,当然也可以用 MATLAB 的 minf bnd 函数;