桥梁墩身混凝土裂纹分析原因.doc

上传人:11****ws 文档编号:2426908 上传时间:2019-05-12 格式:DOC 页数:9 大小:77KB
下载 相关 举报
桥梁墩身混凝土裂纹分析原因.doc_第1页
第1页 / 共9页
桥梁墩身混凝土裂纹分析原因.doc_第2页
第2页 / 共9页
桥梁墩身混凝土裂纹分析原因.doc_第3页
第3页 / 共9页
桥梁墩身混凝土裂纹分析原因.doc_第4页
第4页 / 共9页
桥梁墩身混凝土裂纹分析原因.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、1混凝土桥墩裂缝分析和控制中铁 0 局集团二处 提要:本文对铁 路和公路桥梁墩身混凝土在施工过程中的非受力裂缝的产生原因作了分析,并提出了相应的预防措施及处理方法。关键词 :桥墩 裂纹 分析 控制许多桥梁混凝土桥墩在施工过程中出现了不同程度、不同形式的裂缝,这是一个相当普遍的现象。桥梁墩身混凝土裂缝是一直困扰着桥梁工程技术人员的技术难题。如 2001 年陇海 线改建宝兰二线施工过程中宝天段多座桥梁桥墩浇灌完毕后不同程度的存在裂缝, 为此郑州局西安工程指挥部组织宝兰二线设计、监理、各施工单位和有关专家沿 线参观并组织招开研讨会。我单位在最近几年所施工的桥梁中亦有多座桥墩发现裂缝。为进一步加强对桥

2、梁墩身混凝土裂缝的认识,尽量避免工程中出现危害 较大的裂缝,本文 对混凝土桥墩裂缝的种类和原因作了分析、总结,并提出了在实际施工中具有可操作性的预防措施和处理方法。一、混凝土桥墩裂缝产生的原因混凝土是一种多相体,它既具有抗压极限强度较高、耐久性良好的优点,又具有抗拉强度较低,受拉时 抗变形能力小,容易开裂等缺点。混凝土 结构所产生的裂缝原因大致可分以下三种:1、由外荷载(如静、动荷载)的直接应力所产生的裂纹; 2、由结构的次应力(弯矩及切力)引起的裂缝;3、变形变化所产生的裂纹,即主要由温度、收缩、不均匀沉降或膨胀等因素而引起的裂缝。相关资料中认为,工程实践中结构物的裂缝原因,属于由荷载引起的

3、约占 20%左右,属于由变形变化引起的 约占 80%以上。变形所产生的裂缝又分为温度差所产生的裂纹和收缩所产生的裂纹。温度差所产生的裂纹如外界气温的骤然变化及混凝土水化热不均所产生的裂纹。收缩所产生的裂纹有干缩、塑性收缩、碳化收 缩及自收 缩等所产生的裂纹。(1)温度变化引起的裂缝混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。引起温度变化主要因素有:2A、年、月温差。一年中四季温度不断变化,但变化相 对缓慢。我国年温差一般以一月和七月的月平均温度作为变化幅度。年、月温差产生的裂缝一般属

4、深层裂缝。B、日照。桥墩侧面受太阳曝晒后,温度明 显高于其它部位,温度梯度呈非线形分布。由于受到自身约束作用,导致局部拉应力较 大,出 现裂缝。日照产生的裂缝一般属表面裂缝。日照和 骤然降温是导致结构温度裂缝的最常见原因。C、骤然降温。突降大雨、冷空气侵 袭、日落等可导致结构外表面温度突然下降,但因内部温度变化相对较 慢而产生温度梯度。D、水化 热。水泥在水化 过程中放出的热量是混凝土体内温度上升的主要因素。混凝土内部温度显著升高,体积膨胀。由于混凝土的导热性能较差,而混凝土外部却随气温降低而冷却收缩,混凝土内部膨胀与外部收缩这两种作用互相抵制,使外部混凝土产生很大的拉应力,当混凝土的抗拉强度

5、不足以抵抗这种拉应力时,便开始出现裂缝。水化热裂缝仅存在结构表面。E、蒸汽养 护或冬季施工 时 施工措施不当,混凝土骤冷骤热,内外温度不均,易出现裂缝。(2)收缩引起的裂缝在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和缩水收缩(干 缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。A、塑性收 缩 。发生在施工过程中、混凝土浇筑后 415 小时左右,此时水泥水化反应激烈,分子链逐渐 形成,出 现泌水和水分急 剧蒸发,混凝土失水收 缩,此时骨料与胶合料之间产生不均匀的沉缩变形,都发生在混凝土终凝之前,即塑性阶段,称 为塑性收缩。塑性收缩所产生量级很大

6、,可达 1%左右。常在浇筑大体积混凝土后 415 小时内,在表面上,特别在养护不良的部位出现龟裂,裂缝无规则,既宽 (12mm)又密(间距 510cm),属表面裂缝。由于沉缩的作用,这些裂缝往往沿钢筋分布。B、缩水收缩(干缩)。混凝土结硬以后,随着表 层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收 缩,表面收 缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便 产生收缩裂缝。混凝土硬化后收缩主要就是 缩水收缩。3C、自生收缩。自生收缩是混凝土在硬化过程中,

7、水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿 渣水泥混凝土与粉煤灰水泥混凝土)。D、炭化收 缩 。大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。炭化收缩只有在湿度 50%左右才能发生,且随二氧化碳的浓度的增加而加快。混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规 律。(3)约束条件的影响约束条件是指各种结构物在变形变化中所受之约束而阻碍其变形。桥梁墩身的外部约束指桥墩的边界条件如桥墩承台、墩身模板等对桥墩墩身混凝土变形的约束。当桥墩承台与墩身混凝土浇筑间距时间较长

8、,墩身混凝土收缩变形时承台即阻碍墩身混凝土的收缩,当其所产生拉应力超过混凝土抗拉强度时,墩身便产生裂缝。承台约束所产生裂 缝一般在墩身中心线附近,为竖向裂缝。墩身混凝土浇筑初期,桥梁墩身模板对其起约束作用。若拆模较早, 释放了混凝土所受握裹力,混凝土向外放张,若所受拉 应力超 过混凝土抗拉强度时,即产生裂缝。二、常见桥梁墩身裂缝形式在施工过程中桥梁墩身常见的裂缝有:1、桥墩中心线附近的竖向裂缝;2、桥墩在日照时间较长侧的裂缝;中心线裂缝桥墩图 1、中心线附近裂缝桥墩中心线裂缝对拉筋孔图 2、对拉筋孔处裂缝43、在桥墩模板对拉筋孔处的裂缝;4、在桥墩模板分块接缝处的裂缝;5、桥墩顶部环向裂缝;6

9、、混凝土表面细小,不规则、长短不一的裂缝。桥墩中心线附近的裂缝可能是由于约束条件和温度共同作用产生的裂缝;桥墩在日照时间较长侧的裂缝则可能是由于日照温差的影响产生的裂缝;在桥墩模板对拉孔位处的裂缝可能是由于水化热温差和收缩所产生的裂缝;模板分块接缝处的裂缝可能是由于浇筑后为便于拆模松动连接螺栓后一方面约束释放,另一方面温差变化较大而引起的;桥墩顶部的环向裂缝可能是收缩裂缝或顶部施工荷载所引起;桥墩混凝土表面的细小、不规则、 长短不一的裂缝则可能是收缩裂缝和温度变化引起的裂缝。各种裂缝的划分并无严格界限,混凝土桥墩裂缝产生的原因往往是多种因素共同作用的影响而产生。三、桥梁墩身混凝土裂缝的控制标准

10、1、铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3-99)中第 5.2.7 中规定钢筋混凝土结构构件的计算裂缝宽度容许值:裂缝宽度容许值 f(mm)结构构件所处环境条件 f无侵蚀性介质 0.25长期处于水下或潮湿的土壤中 有侵蚀性介质 0.20无侵蚀性介质 0.20水下结构或地下结构 处于水位经常反复变动的条件下 有侵蚀性介质 0.15有防护措施 0.25一般大气条件下的地面结构 无防护措施 0.202、公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ023 85)第 4.2.6 条规定:在一般正常大气(不带高浓度侵蚀性气体)条件下,钢筋混凝土受弯构件在荷载组合 I 作用下,

11、算得的最大裂缝宽度不应超过 0.2mm;在荷载组合或组合作用下,不应超过 0.25mm。处于严重暴露情况(有侵 蚀气体或海洋大气)下的钢筋混凝土构件,容许裂缝宽 度不应超过 0.1mm。3、铁路桥涵工程质量检验评定标准(TB1041598 )第 8.1.7 条:混凝土墩台外观评定应符合下列规定:5合格:混凝土基本无蜂窝麻面,但存在 0.2mm 以下局部收缩裂纹,接槎处无明显错位、无跑模现象,允许偏差符合规定。优良:混凝土光滑平整,接槎顺直,无 0.2mm 以下局部收 缩裂纹,允 许偏差符合规定。4、公路工程质量检验评定标准(JTJ071 98)第 6.13.3.2 条规定:混凝土表面出现非受力

12、裂缝,减 13 分。缝宽超过 0.15mm 者必 须处理。从以上规范可看出,对于混凝土桥墩,不允 许出现荷载应力产生的裂缝,而仅仅可存在一定的因变形变化而产生的非受力性裂缝。对于铁路桥梁混凝土墩台,一般情况下要求裂缝的 宽度不得大于 0.2mm;对于公路桥梁墩台,一般情况下要求裂缝的宽度不得大于 0.2mm,大于 0.15mm 的裂缝必须进行处理。对于裂缝的深度一般无规定。四、桥梁墩身混凝土裂缝的预防桥梁墩身混凝土的非受力裂缝会严重降低桥墩混凝土结构的整体性和耐久性。现在 对于工程质量要求越来越严格,一般要求 桥 墩上少出现、甚至不允 许出现非受力裂缝,这样就必须 加强对桥梁墩身混凝土裂缝的预

13、防。由于墩身混凝土裂缝的主要原因为水化热、 骤然降温、日照及收 缩等,因而主要针对降低混凝土水化热、防止温度骤变、减少收缩及提高混凝土抗裂能力等方面着手。1、混凝土材料(1)水泥:选用低水化热水泥,如矿渣硅酸盐水泥与低热微膨胀水泥等。水泥标号越高、单位体积用量越大、磨细度越大, 则混凝土收 缩越大,且发生收缩时间越长。(2)细骨料含泥量小于 3%,采用中粗砂,级配良好;(3)粗骨料优先选用 540mm 石子,含泥量小于 1%,针、片状小于 10%(重量比),级配良好;(4)当混凝土的粗骨料或细骨料具有潜在碱活性时,桥墩混凝土的最大碱含量:若骨料具有碱硅酸盐反应活性时,在干燥环境中为 3.5kg

14、/m3 在潮湿环境中为 3.0 kg/m3,在含碱环境中必须用非碱活性骨料;若骨料具有碱碳酸盐反应活性时必须用非碱活性骨料。2、混凝土配合比(1)降低水灰比。尽可能降低水灰比,不仅可有效降低水化热,而且可提高 强度,减少收缩,减少外观弊病。6(2)不要盲目增加水泥用量。目前,在施工现场,为 了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩明显加大。(3)掺粉煤灰。混凝土内掺入粉煤灰后,可降低水化热;减少干燥收缩;减少受热体积变化;有火山灰作用;增加混凝土最大抗压强度;增加抗拉强度;增加最大抗弯强度;增加弹性模量;改善和易性;减少离析现象;在标准规划容许范围内,凝结较缓;改善成

15、型质量和对模型的磨损;减低碱集料反应;降低透水性和浸析现象;使用引气剂时具有足够的抗冻融抵抗力;增强对硫酸盐的抵抗力;节约水泥,降低成本。但掺粉煤灰混凝土的抗冻性、抗碳化性有所降低。在普通混凝土中,一般采用超量取代法掺用粉煤灰,适当降低水灰比,可减小对混凝土抗冻性及抗碳化性的影响。粉煤灰取代水泥率见下表:粉煤灰取代水泥百分率混凝土强度等级 取代普通硅酸盐水泥率(%) 取代矿 渣硅酸 盐水泥率( %)C15 以下 1525 1020C20 1520 1015C25C30 1015 10注:a、以 32.5 号水泥配制成的混凝土取表中下限值 ;以 42.5 号水泥配制成的混凝土取上限值;b、C20

16、 以上的混凝土宜采用 I、II 级粉煤灰, C15 以下的素混凝土可采用级粉煤灰。(4)泵送混凝土砂率应在 35%45%之间,在 满足可泵性前提下,尽量降低砂率。掺入粉煤灰后,砂率宜减小 2%6%。(5)坍落度在满足泵送条件下尽量选小值。(6)掺缓凝外加剂,以节约水泥,改善混凝土和易性与可泵性,延 长缓凝时间。冬天不加缓凝外加剂。(7)C20 以下的混凝土,在设计允许时,可掺入低于 25%的片石,可有效减小水化热。3、施工工艺(1)模板:桥墩模板一般采用钢模板。对于桥墩,尤其是铁路桥墩直径较大,钢模板一定要有足够的强度、 刚度和稳定性,能承受新浇筑混凝土的重力、 侧压力及施工中可能产生的各种荷

17、载。模板安装要牢固,模板与脚手架不宜互相连接。7(2)降低混凝土浇筑入模温度:A、避免气温高时浇筑混凝土;B、冷却拌和水,夏季用井水或水中掺冰霄;C、冷却骨料及水泥;D、泵送混凝土的泵送管加 铺草包及喷水。(3)混凝土分层浇筑,每层厚度不宜超过 30cm。控制浇筑速度,浇筑速度不宜过快。可有利于水化热的散 发和减小混凝土的塑性收缩裂缝。(4)混凝土捣固密实,可有效防止收缩裂缝。但不可过捣,否 则造成混凝土离析,墩身外表面呈树支状纹 路或砂化。(5)尽量减少施工缝,认真处理施工缝,减少 环向裂缝的产生。但不可 过分追求一次浇筑成型。(6)混凝土在浇筑振捣过程中的泌水,应予以排除。(7)为防止气温

18、骤变对混凝土的影响,最简单、易行、可靠的 办法是在桥墩模板外侧挂草席或麻袋。在浇 筑混凝土前即开始给模板及草席浇水,在混凝土浇筑过程中及浇筑后一直浇水, 对模板进行控温。在盛夏可防止外界热量侵袭混凝土,在冬季可起到保温的作用。(8)适当推迟拆模时间。混凝土浇筑时模板外张受拉力。若拆模时间过早, 则释放了混凝土所受握裹力,混凝土向外放张而开裂。另模板拆除可看是一温度骤降的过程。(9)拆模后,即时在桥墩混凝土外表包裹一层塑料薄膜,可有效减少混凝土外表面水分的散发,减少混凝土的收缩。(10)为提高混凝土抗裂能力,可在表面加钢筋网、 铁丝网。 对于有钢筋的桥墩,严格控制保护层厚度。保护层过厚会造成表面

19、裂 缝。(11)桥墩顶部混凝土外露面作好二次赶压抹平,及早覆盖。(12)桥墩承台施工完毕后,应及早浇筑墩身混凝土,以减小承台对墩身的约束影响。五、桥墩混凝土裂缝的处理虽然对桥墩混凝土的原材料、配合比及工艺等方面加强预防措施,但混凝土桥墩的裂缝仍是不可避免的。 对于桥墩裂缝,首先必须分析裂缝的形成原因。 对于降低承载力的裂缝,必须 由业主、 设计、监理和施工 单位四方共同对其公析后采用适当的措施进行处理,或 补强型化学灌浆,或返工重做。若由于 变形变化所8引起的非受力裂缝,大约占 80%,而 这种裂缝无承 载力危险。可采用防水型化学灌浆技术作一般表面处理。对于须进行处理的裂缝标准,公路桥墩, 公

20、路工程质量检验评定标准中也明确说明缝宽超过 0.15mm 者必须处理;铁路桥墩,可存在 0.2mm 以下局部收缩裂缝,但通常对宽度在 0.1mm 以上的裂缝进行灌浆修补。修补的方法一般采用环氧树脂灌浆修补。环氧灌浆材料是以环氧树脂为主要成分,加入增塑剂、稀释剂和固化剂等组成的一种高分子材料,一般具有良好的物理力学性能。配比可参考下表。材料名称 规格 重量比(g) 备注环氧树脂 E-44 100 主剂邻苯二甲酸二丁酯 工业 10 增塑剂二甲苯 工业 3060 稀释剂,用量缝宽大小而定乙二胺 试剂 810 固化剂,用量以操作时间、环境温度而定在灌浆以前,必须用钢丝刷将混凝土表面的灰尘、浮渣及松散层

21、仔细清除,严重者用丙酮擦洗,露出混凝土本体,使裂缝处保持干 净。布嘴 时选择裂缝较宽处粘合嘴子。嘴子之间的距离,视裂缝大小、结构形式而定,一般为 3060cm,水平裂缝则可适当缩小;裂缝纵横交错时,交叉处必须加设嘴子;裂缝的端部应设嘴子;贯通缝必须在两面设嘴子,且交错进行。用 红铅 笔划出嘴子位置;记录裂缝宽度;用二甲苯擦净钢嘴底盘;将环氧腻子刮在钢嘴底盘上;贴在红铅笔划出的位置;用环氧腻子封闭裂缝。布嘴和封闭用环氧腻子配方可参考下表:材料名称 规格 重量比(g) 材料名称 规格 重量比(g)环氧树脂 E44 100 乙二胺 试剂 810邻苯二甲酸二丁酯 工业 30 滑石粉成水泥 300350

22、环氧腻子干固后(20气温 时约 36h)进行试漏防止跑浆。接通各条管路;配制好浆液;将浆液倒入压浆罐并往裂缝内灌浆。待邻近嘴子出浆后立即关截门封钢嘴门;将所布钢嘴逐个灌满浆液。混凝土裂缝灌浆后,一般经 7 天龄期方可使用。六、结束语9对于混凝土桥墩工程,尤其是铁路混凝土桥墩,往往属于大体积混凝土工程,出现裂缝的情况较多。只有在工程施工过程中有针对性地采取有效的防裂措施,才能有效地减少或避免混凝土的开裂。但混凝土桥墩裂缝的形成原因相当复杂,还须所有工程技术人员对其作进一步的探讨,并提出更有效的控制措施。参考文献:1、王铁梦著, 工程结构裂缝控制,中国建筑工 业出版社,19972、马清洁编著, 混

23、凝土外加剂及建筑防水材料应用指南,中国建材工 业出版社,1998.63、顾辋、蒋亭玲编著, 建筑施工新技术,山 东科学技术出版社,19944、中国铁路工程总公司教卫处编写, 铁路桥梁工,中国铁道出版社,19995、黄永莱、王亚斌, 浅谈大体积混凝土,大 桥工程局技术处6、铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3-99),中国铁道出版社,20007、铁路桥涵工程质量检验评定标准(TB1041598 ),中国铁道出版社,19998、铁路混凝土与砌体工程施工规范(TB102102001 ,J118-2001),中国 铁道出版社,20019、公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ023 85),人民交通出版社,198510、公路工程质量检验评定标准(JTJ071 98),人民交通出版社, 1999

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。