1、浙江万里学院现代物流学院 外文文献翻译 1 毕业论文外文翻译 译文 标题:精益管理和六西格玛的整合 资料来源 : 沃尔沃汉普敦大学,商学院,英国, wVl 1SB,沃尔沃汉普敦 作者: Anna Gutowska, Andrew Sloane, and Kevan A Buckley 2 六西格玛 相关概述 六西格玛可以追溯到两个主要来源:摩托罗拉公司的全面质量管理( TQM)和六西格玛统计度量。如今,六西格玛是一个广泛的长期经营战略决策,而不是一个狭隘的质素管理计划。 从 TQM,六西格玛保存的概念,每个人都在组织 中 负责组织生产货物和服务质量。可以 追 溯到全面质量管理六西格玛的其他组成
2、部分包括客户满意度,管理决策 时 的重点,并在统计,根本原因分析,以及其他问题的解决方法的教育和培训的显著投资。随着全面质量管理,质量是第一优先。全面质量管理的主要手段包括质量的七种工具:控制图,直方图,检查表,散点图,原因和效果图,流程图,帕累托图 ;和质量七分管理工具:亲和图,相互关系有向图,树图,矩阵图,优先级矩阵,过程决策程序图,和活动网络图 。 六西格玛度量是在摩托罗拉公司于 1987 年在不合标准的产品质量,在许多情况下,工程师设计的组成部分时,所作出的决定追查。传统上, 设计工程师使用的 “六 西格玛 ”规则时,评估是否可接受的比例制造的零部件预计将满足公差。当一个组件的公差与传
3、播过程变化的六个标准差单位一致,约 99.7的组件为中心的过程中,预计将符合公差。也就是说,只有 0.3的零部件将不合格的公差,转化为约 3000 不符合规定的百万分之几( NCPPM) 在摩托罗拉 公司中 ,因为产品变得更加复杂,有缺陷的产品越来越普遍,而在同一时间客户要求更高的 quality.For 例如,寻呼机或手机,包括数百个组件。每个组件通常包括许多重要的质量特征。它的产品包括数以千计的每售出的产品缺陷( OFDs)(哈利和施罗德, 2000 年)的机会并不少见。传统的三西格玛每个 OFD 的质量不再是可以接受的。例如,考虑一个产品,包含 1,000 OFDs。如果每个 OFD,三
4、西格玛质量水平得以实现,只有约 5的产品应无缺陷。用来获得这个概率计算需要符合的比例( 0.997)提高到 1000 的力量,是基于二项式概率分布( Devore, 2000 年)。 用于确定的无缺陷的产品概率计算公式,只提供了一个近似方针的原因有浙江万里学院现代物流学院 外文文献翻译 2 两个。由于三西格玛的最低设计标准,这将是预计,许多产品将超过三西格玛的标准。另一方面, 0.997 一致性概率假定为 中心的过程中,将预计,许多进程不会中心的每一个组件是生产时间。计算,但是,有效地说明生产无缺陷的产品所固有的挑战。假设 1000 OFDs,只有 37的产品将无缺陷,如果在每个 OFD 的质
5、量水平平均为 99.9, 90的产品将无缺陷,如果在每个 OFD的质量水平平均为 99.99 。 其他行业面临着类似的挑战,实现优质的。除了消费电子行业,与大量的OFDs 其他产品包括汽车,发动机,机体,和计算机。许多行业的产品也不太复杂,面临着类似的挑战。在该领域的缺陷可能造成的危害的医疗设备和其他产品的制造商必须达到近乎完美的品 质。制造复杂程度较低的产品,但在非常大量出售的公司还需要实现优质的重点。其他行业面临着类似的挑战,实现优质的。除了消费电子行业,与大量的 OFDs 其他产品包括汽车,发动机,机体,和计算机。许多行业的产品也不太复杂,面临着类似的挑战。在该领域的缺陷可能造成的危害的
6、医疗设备和其他产品的制造商必须达到近乎完美的品质。制造复杂程度较低的产品,但在非常大量出售的公司还需要实现优质的重点。 在摩托罗拉,研究组件的质量和最终产品质量之间的关系时,人们发现,从很多很多,这个过程往往转移最多 1.5 西格玛单位( 1993 年麦克法登 ,)。这个概念以图形方式显示在图 2 中,它显示了中心的过程和过程在两个方向转移1.5 西格玛单位。表一提供了组件的质量和最终产品质量之间的关系,假设 1.5西格玛移发生。表一,西格玛水平的标准化过程中的变化(见图 2), OFD 质量 NCPPM 如果过程中一个完整的 1.5 西格玛单位转移,表中的概率提供的最终产品的比例,将无缺陷。
7、例如,如果公司设定目标为 99.7和产品的最终产品的质量,包括约 1000 OFDs,然后 3.4 NCPPM 相应的六西格玛度量将成为对所有作出决定的标准。 在 1999 年年底,福特汽车公司成为第一大汽 车制造商采用六西格玛战略。在福特汽车,每辆汽车有大约 20,000 名 OFDs。因此,如果福特分别达到每15 六西格玛质量,约一台车的生产将包含一个缺陷( Truby, 2000 年)。我在表,如果福特在 5.5 西格玛水平的经营,他们的汽车约 50将包括至少有一个缺陷,这是值得注意的。如今,六西格玛六六西格玛统计度量和 TQM 的组合,与更多的创新,提高计划的有效性,同时扩大其重点。六
8、个西格玛保留从 TQM的主要组成部分包括重点客户,认识到质量是所有员工的责任,以及对员工培训的重点。六西格玛度量也使用,但在扩大的方式。在 1999 年年底,福特汽车公司成为第一大汽车制造商采用六西格玛战略。在福特汽车,每辆汽车有大约 20,000 名 OFDs。因此,如果福特分别达到每 15 六西格玛质量,约一台车的生产将包含一个缺陷( Truby, 2000 年)。我在表,如果福特在 5.5 西格玛水浙江万里学院现代物流学院 外文文献翻译 3 平的经营,他们的汽车约 50将包括至少有一个缺陷,这是值得注意的。如今,六西格玛六六西格玛统计度量和 TQM 的组合,与更多的创新,提高计划的有效性
9、,同时扩大其重点。六个西格玛保留从 TQM 的主要组成部分包括重点客户,认识到质量是所有员工的责任,以及对员工培训的重点。六西格玛度 量也使用,但在扩大的方式。 六西格玛,包括组织的输出值的不仅仅是质量,可用性,可靠性,交货表现,及后市场服务。在每个客户的价值方程的组件的性能应该优于。因此,六西格玛度量应用在广泛的时尚,追求近乎完美的表现,在活动的最低水平。此外,六西格玛项目通常创建一个结构下,员工的培训是形式化和支持,以确保其有效性。影响客户满意度,将基本解决问题的能力训练活动所涉及的所有员工。其他员工提供先进的培训和要求作为导师,其他质量改进项目的支持。 3 精益管理的概述 精益管理的概念
10、可以追溯到丰田生产系统( TPS),制造理念率先 由日本工程师大野茂雄吾(英曼, 1999 年)。是众所周知的,但是,亨利福特实现高吞吐量和低库存,并实行短周期,早在 1910 年代后期的制造。大野十分钦佩和研究,因为他的成就和在早期的福特汽车装配厂的整体减少废物(霍普和Spearman, 2001),福特。租者置其屋计划也记时间的发源地( JIT)的生产方法,精益生产的关键因素,基于这个原因,租者置其屋计划仍然是一个卓越的精益管理模式主张。 相比之下,美国传统的生产系统是基于 “批次和队列 ”的概念。高产量,大批量生产,和长期的非价值增加了操作间的排队时间,批次和队列生 产特点。从经济规模的
11、原则,其中隐含假定设置和转换的处罚,使小批量不合算,制定批量和队列技术。这些方法通常会导致质量下降,因为缺陷通常不会发现,直到后续操作,或在成品。 精益管理强调小批量生产,并最终单件流(即转移一批规模。长期拉用来意味着什么,直到它被下游客户需要,并应用一个,为了使( MTO)的方式尽可能地在某些行业,如个人电脑业务, MTO 的生产已成为事实上的商业模式,戴尔 “直销模式 ”,例如,快速转换成成品的个人电脑客户订单准备装运(谢里登, 1999),最初的 “拉 ”上戴尔的生产线是从客户的电话或电子订单。直 销模式还允许戴尔客户的要求定制每个单元。 精益生产的目标是消除浪费(日本慕达),使沿价值流
12、的所有活动创造价值,被称为完美。减少废物集中精力,努力追求通过不断改进或改善项目,以及彻底改善活动,或改革方案。 “改善和改革方案都减少慕达,虽然长期的改革方案是一般保留过程中的初始反思。因此,完善的目标和完美的旅程永远不会结束( Womack 和 Jones, 1996)。 浙江万里学院现代物流学院 外文文献翻译 4 精益管理的另一个要素是在每一个机会,包括需求的变化,制造变异和供应商的可变性,减少变异。制造过程中的可变因素,包括产品质量特性(如长度,宽度,重量)唯一变 化,但任务时间的变化( egdowntime,旷工,操作人员的技术水平)。精益管理,试图通过建立规范的工作程序,以减少任务
13、时间的变化。供应商的变化包括在质量和交货时间的不确定性。在减少供应商的变异往往是通过供应商,生产商合作的伙伴关系和其他形式。 精益生产方式往往会减少交货时间得这么厉害,它成为可行的做法 MTO的生产,并仍然提供及时交付。即使一个使股票( MTS)的方法是需要时(如一个大批量消费类产品填补大量供应和分销渠道的公司),减少交货时间,提高了补货时间,从而降低整个供应网络的库存,使得供应链更加答辩需求 的不确定性。 应该提到的,确实存在个别进程,批处理队列系统目前仍然是必要的。这是通常情况下执行操作,如镀铬,大批量是放置在电镀槽时。扳手制造,例如,可能会动议钢锻件单件流通过一个 U 形的加工单元,但然
14、后积累成一个大批量的细胞年底前被转移到一个镀铬站。事实上,精益制造商很少有纯粹的单件流系统在其整个运作。 精益生产质量管理规范强调了零质量控制( ZQC)的概念。一个 ZQC 系统包括防错(防错),源检查(检查自己的工作的运营商),自动 100检验是一个错误的时候即刻停止操作,并确保安装质量(吾, 1986 年)。通常情况 下,检查执行快速去没有去计,而不是更多的时间消耗变量的测量方法。在批次和队列质量的做法,一般强调通过专门的督察,产品质量审计,统计过程控制( SPC)进行的验收抽样。因此,等效过程中的质量水平,在批处理队列系统的质量差会导致外部故障成本较高,而在精益生产系统的质量差,会导致
15、内部故障成本较高。 浙江万里学院现代物流学院 外文文献翻译 5 外文文献原文 Title: The integration of lean management and Six Sigma Material Source: School of Computing and Information Technology, University of Wolverhampton, Wolverhamptonl wVl 1SB, U.K. Author: Edward D. Arnheiter and John Maleyeff 2.Overview of Six Sigma The roots of
16、 Six Sigma can be traced to two primary sources: total quality management (TQM) and the Six-Sigma statistical metric originating at Motorola Corporation. Today, Six Sigma is a broad long-term decision-making business strategy rather than a narrowly focused quality management program. From TQM, Six S
17、igma preserved the concept that everyone in an organization is responsible for the quality of goods and services produced by the organization. Other components of Six Sigma that can be traced to TQM include the focus on customer satisfaction when making management decisions, and a significant invest
18、ment in education and training in statistics, root cause analysis, and other problem solving methodologies. With TQM, quality was the first priority. The main tools of TQM included the seven tools of quality: control charts, histograms, check sheets, scatter plots, cause-and-effect diagrams, flowcha
19、rts, and Pareto charts; and the seven management tools of quality: affinity diagrams, interrelationship digraphs, tree diagrams, matrix diagrams, prioritization matrices, process decision program charts, and activity network diagrams (Sower et al., 1999). The six-sigma metric was developed at Motoro
20、la in 1987 in response to sub-standard product quality traced in many cases to decisions made by engineers when designing component parts. Traditionally, design engineers used the “three-sigma” rule when evaluating whether or not an acceptable proportion of manufactured components would be expected
21、to meet tolerances. When a components tolerances were consistent with a spread of six standard deviation units of process variation, about 99.7 percent of the components for a centered process would be expected to conform to tolerances. That is,only 0.3 percent of parts would be nonconforming to tol
22、erances, which translates to about 3,000 non-conforming 浙江万里学院现代物流学院 外文文献翻译 6 parts per million (NCPPM). At Motorola, as products became more complex, defective products were becoming more commonplace while at the same time customers were demanding higher quality.For example, a pager or cell phone i
23、ncluded hundreds of components. Each component typically included numerous important quality characteristics. It was not uncommon for a product to include thousands of opportunities for defects (OFDs) in each product sold (Harry and Schroeder, 2000). Traditional three-sigma quality for each OFD was
24、no longer acceptable. For example, consider a product that contains 1,000 OFDs. If, for each OFD, three-sigma quality levels are achieved, only about 5 percent of the product should be defect free. The calculation used to obtain this probability requires raising the fraction conforming (0.997) to th
25、e power of 1,000, and is based on the binomial probability distribution (Devore, 2000). The formula used to determine the probability of defect-free products provides only an approximate guideline for two reasons. Since three-sigma is the minimum design standard, it would be expected that many produ
26、cts would surpass the three-sigma standard. On the other hand, the 0.997 conformance probability assumes a centered process and it would be expected that many processes would not be centered every time a component is produced. The calculation does, however, effectively illustrate the challenge inher
27、ent in producing defect-free products. Assuming 1,000 OFDs, only 37 percent of products will be free of defects if the quality level at each OFD averaged 99.9 percent, and 90 percent of products will be free of defects if the quality level at each OFD averaged 99.99 percent. Other industries face si
28、milar challenges in achieving superior quality. In addition to the consumer electronics industry, other products with a large number of OFDs include automobiles, engines, airframes, and computers. Many industries where products are less complex also face similar challenges. Manufacturers of medical
29、devices and other products where defects in the field may cause harm must achieve almost perfect quality. Companies that manufacture less complex products but sell them in very large volumes also need to be focused on achieving superior quality. At Motorola, when studying the relationship between co
30、mponent quality and final product quality it was discovered that, from lot-to-lot, a process tended to shift a maximum of 1.5 sigma units (McFadden, 1993). This concept is shown graphically in Figure 2, which shows a centered process and processes shifted 1.5 sigma units in both directions. Table I
31、provides the relationship between component 浙江万里学院现代物流学院 外文文献翻译 7 quality and final product quality, assuming that the full 1.5 sigma shift takes place. In Table I, Sigma level is the standardized process variation (see Figure 2), OFD quality is the NCPPM if the process shifts a full 1.5 sigma units
32、, and the probabilities in the table provide the proportion of final products that will be free of defects. For example, if the company sets a goal for final product quality of 99.7 percent and products include about 1,000OFDs, then the 3.4 NCPPM corresponding to the Six-Sigma metric would became th
33、e standard against which all decisions were made. In late 1999, Ford Motor Company became the first major automaker to adopt a Six Sigma strategy. At Ford, each car has approximately 20,000 OFDs. Therefore, if Ford were to attain Six Sigma quality, approximately one car in every 15 produced would co
34、ntain a defect (Truby, 2000). It is interesting to note in Table I that if Ford operated at a 5.5 sigma level, about 50 percent of their cars would include at least one defect. Today, Six Sigma is a combination of the Six-Sigma statistical metric and TQM, with additional innovations that enhance the
35、 programs effectiveness while expanding its focus. The main components of Six Sigma retained from TQM include a focus on the customer, recognition that quality is the responsibility of all employees, and the emphasis on employee training. The Six-Sigma metric is also used, but in an expanded fashion
36、. With Six Sigma, the value of an organizations output includes not just quality, but availability, reliability, delivery performance, and after-market service. Performance within each of the components of the customers value equation should be superior. Hence, the Six-Sigma metric is applied in a b
37、road fashion, striving for near perfect performance at the lowest level of activity. In addition, Six Sigma programs generally create a structure under which training of employees is formalized and supported to ensure its effectiveness. All employees involved in activities that impact customer satis
38、faction would be trained in basic problem solving skills. Other employees are provided advanced training and required to act as mentors to others in support of quality improvement projects. 3.Overview of lean management The concept of lean management can be traced to the Toyota production system (TP
39、S), a manufacturing philosophy pioneered by the Japanese engineers Taiichi Ohno and Shigeo Shingo (Inman, 1999). It is well known, however, that Henry Ford achieved high throughput and low inventories, and practiced short-cycle manufacturing as early as the late 1910s. Ohno greatly admired and studi
40、ed Ford 浙江万里学院现代物流学院 外文文献翻译 8 because of his accomplishments and the overall reduction of waste at early Ford assembly plants (Hopp and Spearman,2001). The TPS is also credited with being the birthplace of just-in-time (JIT) production methods, a key element of lean production, and for this reason t
41、he TPS remains a model of excellence for advocates of lean management. By contrast, the traditional US production system was based on the“batch-and-queue” concept. High production volumes, large batch sizes, and long non-value added queue times between operations characterize batch-and-queue product
42、ion. Batch-and-queue techniques developed from economy of scale principles, which implicitly assumed that setup and changeover penalties make small batch sizes uneconomical. These methods typically result in lower quality since defects are usually not discovered until subsequent operations or in the
43、 finished product. Lean management emphasizes small batch sizes and, ultimately, single-piece flow(i.e. transfer batch size . The term pull is used to imply that nothing is made until it is needed by the downstream customer, and the application of a make-to-order (MTO) approach whenever possible. In
44、 some industries, such as the personal computer business, MTO production has become the de facto business model. The Dell “direct sales model”, for example, quickly converts customer orders into finished personal computers ready for shipment (Sheridan, 1999). The initial “pull” on the Dell productio
45、n line is the telephone or electronic order from the customer. The direct sales model also allows Dell to customize each unit to the customers specifications. The lean production goal of eliminating waste (muda in Japanese), so that all activities along the value stream create value, is known as per
46、fection. Efforts focused on the reduction of waste are pursued through continuous improvement or kaizen events, as well as radical improvement activities, or kaikaku. Both kaizen and kaikaku reduce muda, although the term kaikaku is generally reserved for the initial rethinking of a process. Hence,
47、perfection is the goal and the journey to perfection is never ending (Womack and Jones, 1996). Another element of lean management is the reduction of variability at every opportunity, including demand variability, manufacturing variability, and supplier variability. Manufacturing variability include
48、s not only variation of product quality characteristics (e.g. length, width, weight), but also variation present in task times (e.g.downtime, absenteeism, operator skill levels). Lean management attempts to 浙江万里学院现代物流学院 外文文献翻译 9 reduce task time variation by establishing standardized work procedures. Supplier variability includes uncertainties in quality and delivery times. The reduction in supplier variability is often achieved through partnerships and other forms of supplier-producer cooperation. Lean production practices will often reduce lead times s