1、 1 本科毕业论文外文翻译 译文: 猕猴桃在热风微波干燥期间的干燥速率、收缩和复水性特点 Journal of Food Engineering 48 (2001) 177-182, Medeni Maskan 摘要: 本文研究讨论经 热风干燥、微波干燥和热风微波联合干燥三种干燥方法处理后,猕猴桃(厚度 5.03 0.236mm)的干燥特性,即比较各组样品的干燥速率、收缩和复水能力。结果表明:无论哪种干燥方法,在干燥过程的干燥速率都呈降速趋势。微波干燥和微波辅助热风干燥速率快,用时短。其中微波干燥处理的猕猴桃收缩率和吸水 率均大于热风干燥和热风微波联合干燥,而复水性最低。 关键词: 干燥;猕猴
2、桃;复水性;收缩;热风;微波 1 前言 脱水果蔬因其保质期长、种类多和体积小等优点,受到消费者的喜爱。为扩大它的市场,可通过改善产品质量以及加工工艺。 猕猴桃 的保 质期 很短 ,冷 藏过程 中也 会出 现软 化, 损失 维生素( OConnor-Shaw, Roberts, Ford, Agar, Massantini, Hess-Pierce, Yongsawatdigul Feng Maskan, 2000) 。 近年来,为提高脱水产品的质量,微波干燥逐渐替代了传统干燥。与传统干燥一样,微波干燥也是利用内部水分蒸发形成压力差,使水分扩散到表面挥发掉,最高效率能够使产品水平低于 20%。但
3、基于经济考虑,微波干燥通常在降速阶段2 或水含量低(常规干燥需要较长时间)时使用。现阶段微波干燥已用于药材干燥 (Giese,1992)、马铃薯 (Bouraout et al.,1994)、葡萄干 (Ko-staropoulos Litvin, Mannheim, Lin, Durance, Prabhanjan et al.,1995;Lin et al., 1998; FuneboFeng Lin et al.,1998)。热风微波联合干燥的样品复水能力最高。这种方法能够改善猕猴桃的复水能力。这些结果的得出都是根据图 4 所示的数据。这些数据同时表明了样品结构干燥时收缩的越少,恢复后的吸
4、水能力越强。 7 4. 结论 从上述结果得出: 微波和微波辅助加热可使干燥时间减少 89-40%。参数扩散模型可充分描述热风干燥和微波干燥的数据。热风微波干燥产品具有收缩性小和复水性强的特点。猕猴桃片的实验结果表明,热风微波联合干燥可用于保存高品质产品。 8 参考文献 Agar, T. I., Massantini, R., Hess-Pierce, B., & Kader, A. A. (1999).Postharvest CO2 and ethylene production and quality maintenance of fresh-cut kiwifruit slices. Jo
5、urnal of Food Science, 64, 433-440. Bouraout, M., Richard, P., & Durance, T. (1994). Microwave and convective drying of potato slices. Journal of Food Process Engineering, 17, 353-363. Drouzas, A. E., & Schubert, H. (1996). Microwave application in vacuum drying of fruits. Journal of Food Engineerin
6、g, 28, 203-209. Feng, H., & Tang, J. (1998). Microwave finish drying of diced apples in a spouted bed. Journal of Food Science, 63, 679-683. Funebo, T., & Ohlsson, T. (1998). Microwave-assisted air dehydration of apple and mushroom. Journal of Food Engineering, 38, 353-367. Giese, J. (1992). Advance
7、s in microwave food processing. Food Technology, 46, 118-123. Karathanos, V. T., & Belessiotis, V. G. (1997). Sun and artificial air drying kinetics of some agricultural products. Journal of Food Engineering, 31, 35-46. Khraisheh, M. A. M., Cooper, T. J. R., & Magee, T. R. A. (1997). Shrinkage chara
8、cteristics of potatoes dehydrated under combined microwave and convective air conditions. Drying Technology International, 15, 1003-1022. Kostaropoulos, A. E., & Saravacos, G. D. (1995). Microwave pretreatment for sun-dried raisins. Journal of Food Science, 60, 344-347. Lin, T. M., Durance, T. D., &
9、 Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Research International, 4, 111-117. Litvin, S., Mannheim, C. H., & Miltz, J. (1998). Dehydration of carrots by a combination of freeze drying, microwave heating and air or vacuum drying. Journal of
10、Food Engineering, 36, 103-111. Maskan, M., & G o g us, F. (1998). Sorption isotherms and drying characteristics of mulberry (Morus alba). Journal of Food Engineering,37, 437-449. Maskan, M., & Ibanoglu, S. (1998). Drying behaviour of infrared dried tarhana dough. In Proceedings of Food Engineering C
11、ongress (pp. 171-177). Turkey: Gaziantep. 9 Maskan, M. (2000). Microwave/air and microwave nish drying of banana. Journal of Food Engineering, 44, 71-78. Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48, 169-175. Moyls, A
12、. L. (1981). Drying of apple puree. Journal of Food Science,46, 939-942. Mudgett, R. E. (1989). Microwave food processing. Food Technology,43, 117-126. OConnor-Shaw, R. E., Roberts, R., Ford, A. L., & Nottingham, S. M. (1994). Shelf-life of minimally processed honeydew, kiwifrui, papaya, pineapple a
13、nd cantaloupe. Journal of Food Science, 59, 1202-1206,1215. Prabhanjan, D. G., Ramaswamy, H. S., & Raghavan, G. S. V. (1995). Microwave-assisted convective air drying of thin layer carrots. Journal of Food Engineering, 25, 283-293. Ratti, C. (1994). Shrinkage during drying of foods. Journal of Food
14、Engineering, 23, 91-105. Sereno, A. M., & Medeiros, G. L. (1990). A simplied model for the prediction of drying rates for foods. Journal of Food Engineering, 12, 1-11. Sjoholm, I., & Gekas, V. (1995). Apple shrinkage upon drying. Journal of Food Engineering, 25, 123-130. Wang, N., & Brennan, J. G. (
15、1995). Changes in structure, density and porosity of potato during dehydration. Journal of Food Engineering, 24, 61-76. Yongsawatdigul, J., & Gunasekaran, S. (1996). Microwave-vacuum drying of cranberries: Part II. Quality evaluation. Journal of Food Processing and Preservation, 20, 145-156. 10 外文翻译原文