1、深水油气田开发的关键工程技术及状况,海洋石油工程股份有限公司 李志刚 杨晓刚 钟文钟 赵冬岩 何宁 张艳芳中海石油研究中心 李新仲 谢彬 俞曼丽 曹静 冯玮 张恩勇 刘太元中国石油大学(北京)海洋油气研究中心 段梦兰 王懿 赵天奉COPPE/UFRJ Segen Estefen, Carlos Levi, 顾继俊,安晨2009年11月19日,中国造船工程学会海洋工程学术会议,报 告 提 纲,一、世界深水油气田开发状况二、深水油气田开发模式三、深水水面结构四、水下生产系统五、海底管线和立管系统六、连接与安装七、检测和监测,Deepwater oil/gas have become essenti
2、al contributors to world energy supply. 29 giant deepwater oil and gas fields discovered with the reserves of 500MMboe in the world; GOM, Brazil and West Africa: “hot spots” of deepwater exploration & development.,一、世界深水油气田开发状况,全球深水油气储量及投资预测,数据来源:2007-2011全球海上油气预测(Douglas-westwood),储量,投资,Gulf of Mex
3、ico,一、世界深水油气田开发状况,Brazil,一、世界深水油气田开发状况,West Africa,一、世界深水油气田开发状况,西非深水油气田位置示意图,赤道几内亚,尼日利亚,刚果,安哥拉,加蓬,象牙海岸,Continuous innovation of new equipments, advanced technologies and creative development scenarios,一、世界深水油气田开发状况,Characters of deepwater oil and gas E&D,High risk, challenging technologies and larg
4、e investmentLarge reserve, high production and short development periodsHigh drilling success rateLow cost for unit reserve and high returns,一、世界深水油气田开发状况,中国南海区域水深分布图,Oil/Gas Resources in Deepwaters of South China Sea,Water depth 300-3000m Range 200,000km2 6 Depressions with 12000m thickness of depo
5、sition 35TCF gas reserve expected,Northern Deepwater region of SCS,Large oil/gas-rich DW region in South China Sea,Nansha region: 16 Basins Total Area: 700,000 km2 and 520,000 km2 located in China water Total resource: 56.9109 t and 34.9109 t located in China water,Liwan 3-1 Discovery, a prelude to
6、Chinas Deepwater Engineering,Spud-up: 04/27/2006Completion: 3843mWater depth:1500mReserve: 100 Bn m3,二、深水油气田开发工程模式,荔湾3-1气田开发模式,巴西,西非,美国,各种海上浮式平台,图2-1 各种海上浮式平台,二、深水油气田开发工程模式,西非主要产油国现有深水油气田数目一览表,二、深水油气田开发工程模式,目前,西非现有深水油气田的主平台主要有10种类型,另仍有不断创新的平台出现,二、深水油气田开发工程模式,西非现有深水油气田开发模式(350m),二、深水油气田开发工程模式,(1) 以顺应
7、塔平台(CT)为基础的开发模式(2) 以浮式生产储油轮(FPSO)为基础的开发模式(3) 以张力腿平台(TLP)为基础的开发模式(4) 以Spar平台为基础的开发模式(5) 以半潜式(SS)平台为基础的开发模式(6) 利用水下回接到已有设施进行开发(7) 无任何水面设施的生产系统,2.深水油气田开发模式的主要类型,二、深水油气田开发工程模式,CT+干式井口+海底管线 CT+水下生产系统+海底管线 CT+水下生产系统+FPSO+穿梭游轮,(1) 以顺应式塔平台(CT)为基础的开发模式,A.实现形式,B.主要特点,以CT平台为基础的开发模式的特点,二、深水油气田开发工程模式,CPT平台示意 (An
8、gola,BBLT,396m),二、深水油气田开发工程模式,CT+FPSO+水下生产系统+shuttle (Angola,BBLT,396m),FPSO+水下生产系统+穿梭油轮(FPSO可有2个) FPSO+浮式平台(TLP,半潜式平台)+水下生产系统+穿梭油轮 FPSO+水下生产系统+高温高压海底管线,(2) 以浮式生产储油轮(FPSO)为基础的开发模式,A.实现形式,B.主要特点,表2-2 以FPSO平台为基础的开发模式的特点,二、深水油气田开发工程模式,TLP+FPSO+水下生产系统+shuttle (Angola, Kizomba A,10061281 m),FPSO(1)+水下生产系
9、统+shuttle (Angola,Pazflor , 6001200 m),FPSO+水下生产系统+高温高压管线 (Nigeria ,Akpo , 12001400 m),FPSO(2)+水下生产系统+shuttle (Angola, Kizomba C , 732 m),西非部分油田开发模式示意,二、深水油气田开发工程模式,TLP+干式井口+海底管线(上部组块重量小) TLP+水下井口+海底管线 TLP+FPSO/FSO+水下生产系统+穿梭油轮,(3)以张力腿平台(TLP)为基础的开发模式,A.实现形式,B.主要特点,以张力腿平台(TLP)为基础的开发模式,二、深水油气田开发工程模式,传统
10、式张力退平台,迷你式张力腿平台,扩展式张力腿平台,海之星张力腿平台,各种常见的TLP平台,二、深水油气田开发工程模式,TLP+FPSO+水下生产系统+shuttle (Angola, Kizomba B, 10061037 m),以张力腿平台(TLP)为基础的典型开发模式,二、深水油气田开发工程模式,Spar+干式井口+海底管线 Spar+水下生产系统+海底管线,(4)以Spar平台为基础的开发模式,A.实现形式,B.主要特点,Spar平台为基础的开发模式,二、深水油气田开发工程模式,传统式单柱筒式,多筒式单柱筒式,框架式单柱筒式,常见的几种spar类型,二、深水油气田开发工程模式,Spar+
11、水下生产系统+Pipeline(1515 m,GOM),Spar+干式井口+Pipeline(8001000m,GOM,气田),二 深水油气田开发模式的特点及适用性,注:马来西亚东部Sabah的Kikeh油田,1300 m,Spar+FPSO+水下生产系统+Shuttle,二、深水油气田开发工程模式,典型实现方式:半潜式钻采平台(SS)+水下生产系统+FSO(FPSO),(5)以半潜式(SS)平台为基础的开发模式,A.实现形式,B.主要特点,以半潜式(SS)平台为基础的开发模式,二、深水油气田开发工程模式,FPS-semi+水下井口+Pipeline(Na Kika,17702360 m,GO
12、M,油气田),二、深水油气田开发工程模式,卫星井(水下井口)回接;底盘井口回接 水下管汇回接(多个井口),(6)利用水下回接到已有设施进行开发,A.实现形式,B.主要特点,利用水下回接到已有设施进行开发,二、深水油气田开发工程模式,Marimba North 回接到Kizomba A油田的开发模式,二、深水油气田开发工程模式,水下生产系统+海底管线,(7) 无任何水面设施的生产系统(Beach),A.实现形式,B.主要特点,无任何水面设施的生产系统,二、深水油气田开发工程模式,Beach开发模式示意,二、深水油气田开发工程模式,深水开发模式的影响因素,二、深水油气田开发工程模式,Concept
13、ual design for SCR on P-52,三、深水水面结构,1、一种新型4柱三角型壳体的超深水海之星TLP平台,图4-1 SBM的超深水海之星TLP(带振动抑制装置),三、深水水面结构,振动抑制和控制,可调谐的质量/弹簧TLP振动吸收器,没有运动部件,非常小的重量,可应用在10000 ft的水深,允许刚张力键应用在超深水中,2、改进的Spar 平台,(a) 改进的上部壳体,(b) 改进的Spar中心井结构,图4-2 Technip 改进的Spar平台,配合GOM支持第六代钻机,钻机合并在壳体中,而不是甲板,减少上部重量,中心井封闭结构,提供更大的浮力,支持更多立管及荷载,适应300
14、0 m水深,三、深水水面结构,3、SS平台的创新理念,(a) Truss Semi,(b) ESemiTM-II,图4-4 一种创新性的SS干式井口解决方案,图4-3 一种扩展式深吃水平台(EDP)的创新设计,2000 m ,干式井口,经济,。,可采用干式井口 原油生产能力:最大250,000 bpd 天然气:最大750 mmscfd 上部重量:10,00050,000 t 适应水深:3003000 m,三、深水水面结构,4、全新概念的FPSO,船体非传统流线型的平面双壳体设计,横摇周期大于20 s,避免共振,改善运动性能,增强抵抗恶劣风浪能力,疲劳寿命提高到100年以上,25 年内不需要对船
15、体结构进行维护,Petrobras的一种全新FPSO设计,三、深水水面结构,圆柱形FPSO,SSP(Sevan Stabilised Platform),Sevan的压载舱,Sevan的管线布置,FPSO Sevan Hummingbird,第一个安装在北海的圆柱形FPSO,可适应严酷的环境条件45,000桶原油/天,目前的系列包括:FPSO Sevan Piranema,FPSO Sevan Hummingbird,FPSO Sevan Voyageur,Sevan 300 no.4,Sevan 300 no.5等系列,三、深水水面结构,5、FDPSO,Murphy,2009年8月10日,世
16、界上第一个FDPSO西非刚果人民共和国近海80海里处的Mer Profonde Sud 区块的Azurite油田正式投产,6个原油生产井和3个注水井,MPF-1000 FDPSO模型,Azurite油田,三、深水水面结构,圆柱形FDPSO,Sevan Driller(FDPSO),合同情况:Sevan Driller 和Sevan Driller III号:Petrobras S.A.签订了6年合同;Sevan Driller II号:印度石油天然气有限公司(India Oil and Natural Gas Corporation LTD (ONGC))签订了3年的合同。,基本特点:钻井能力
17、水深12,500英尺(3810m)中,可达40,000英尺(12192m)甲板载荷可达15000吨,具有大宗材料的存放能力存储能力可达150,000桶/天,三、深水水面结构,6、其他创新浮式平台,超大型浮式钻井和生产装置,多立柱浮式平台 MCF,新型 Monobr浮式平台,吃水只有40 m,而排水量达到135,000 t,上部组块的重量可达37000 t,抵抗波浪的能力无与伦比,可用在3000 m水深,MCF的甲板采用浮装就位技术在近海安装,MCF的提供了非常大的生产和钻井甲板,MCF的浮力罩大得足够容纳生产节流器 和管汇,适合高温高压油田的生产,4个立柱较传统半潜式平台的立柱长,Spar,三
18、、深水水面结构,四、水下生产系统,1、基本构成,井口结构 控制系统 连接系统 处理设备,水下生产系统的构成,西非Dalia 油田的开发模式示意图及FPSO图片,四、水下生产系统,水下生产系统的井口数量,世界范围内水下生产系统不同水深井口数的发展趋势示意图,四、水下生产系统,2、典型水下生产系统的井口形式,典型水下生产系统的井口形式,(a)单井口回接,(b)菊花链式回接,(c)丛式井口管汇,(d) 多井口底盘,四、水下生产系统,(a) Dalia水下生产井簇布局,(b) Dalia水/气注入线和井口布局,3、井口布局,Dalia油田水下井口布局方案,四、水下生产系统,(a) Dalia采油树(水
19、平),(b) Dalia采油树、井口和导向柱,4、水下生产设备,Dalia油田的水下采油树,水下采油树,四、水下生产系统,Wet Christmas Trees Installed,Total: 2,810,Fonte: Subsea Data Base Dez/01,Grau de Classificao : PBLICO,Gestor UN-BC/CE - Atualizado em 24/03/2004,The first subsea tree was installed in May 1979 in 189m of water in BR, the worlds deepest in
20、stallation at that time,2500m WD Horizontal GLL TreeLatest design for high flowrate wells and for ultra-deepwater,Subsea trees,b. 生产管汇,Dalia SPS 6井槽管汇系统(吸力锚安装),四、水下生产系统, Functions: Oil production Gas production Gas lift injection Water injection,Objectives: Optimize the subsea layout arrangement Red
21、uce flowlines cost Reduce the quantity of risers connected to the platform Full production in advance,Subsea Manifold,WATERINJECTIONWELL,SUBSEASEPARATION SYSTEM,SEPARATED WATERINJECTION LINE,OIL+ GASLINE,PRODUCTIONFLOWLINE,PRODUCTIONWELL,DEGASSER,OIL & GAS,SEPARATOR,WATER,OIL,GAS,PRODUCTION,Subsea S
22、eparation of Produced Water,c. 增压和分离(Subsea Processing),c. 增压和分离(Subsea Processing),Electrical Submersible Pump - ESPChallenges:Gas handling capabilityEquipment reliability,Enhanced Subsea ESP High power ESPSimplified Horizontal XTree with tree cap installed by ROVMudline ESP (installed outside the
23、well, on the ocean floor, downstream the subsea tree, to be retrieved by supply boat),Subsea Processing,Gas-Liquid Subsea Separation + Boosting System VASPS - Vertical Annular Separation & Pumping System,Installed in Marimb field with excellent results (production increase),Subsea Processing,System
24、Requirements:,500 m3/h total flow rate Up to 60 bar diff. pressure Up to 95% GVF at suction 1.2 MW shaft power Electrically driven,Subsea Multiphase Pumping System,Main challenges:Equipment reliability, capability to provide high differential pressure and to work with high gas volume fraction at suc
25、tion,Statoil Tordis Subsea Separation and Boosting,Dalia 油田跨接管及其水下连接示意图,6 in的刚性跨接线以J/L型式连接到管汇2 in的甲醇和伺服线 in的液压线和化学药剂线,d. 跨接管,四、水下生产系统,5、下水控制系统,水下控制单元,节流阀的流动控制模块,控制系统组件,智能完井接口,水下控制系统,四、水下生产系统,Largest user of flexible pipes of about 3000km (steel pipes of 1800km):Petrobras Flexible Standard and Specif
26、ications: New design criteria for ultra-deepwaters, specification of more realistic load cases and combinations (including fatigue) and a more comprehensive set of prototype test methods.,1700km of flexible umbilicals with three to 60 functions, composed of 3/8” thermoplastic hoses, pairs of 2.5mm2
27、(X-tree) or 2X4 mm2 electrical conductors (manifold), and total ” chemical injection high collapse resistant hoses or tubes.,Conceptual design for SCR on P-52,五、深水海底管线和立管系统,40 km绝热双层生产管线 (PIP,12 in和17 in),45 km 12 in注水/气线,Dalia 油田的管线示意图,(c) Dalia 12”动态柔性注水和注气立管,(b) 管线分布图,(a)12in和17in PIP生产管线,五、海底管线和
28、立管系统,Qualification tests of flexible risers and umbilicals,五、深水海底管线和立管系统,Main tube and choke and kill lines made of stronger, lighter composite materialAll carbon fiber riser body with Geometric Trap metallic end connectionSystem subjected to cyclic tension and bending loads with no effect to the co
29、mposite body of end-fittingsGeometric Trap technology offers a pre-loaded design and allows for complete operational compatibility with existing drilling riser systemsNearly double the water depth capacity for a given rigReduced overall system costs by reducing the amount of required floatation, ten
30、sion, and deck load capacityIncreased fatigue resistance,Composite riser,五、深水海底管线和立管系统,柔性立管,悬链式立管(SCR),混合立管,顶部张紧立管(TTR),深水立管的几种分类,五、深水海底管线和立管系统,Challenges:High installation loadsReduced fleet in the WorldHigh pull-in loads at production platform,Installation of Large Diameter Pipeline in Ultra-Deep
31、Waters,五、深水海底管线和立管系统,“Garantia de Escoamento” project (92-96):Methods for predicting, preventing and removing wax deposits occurring in subsea flowlines, pipelines and equipment; Understanding and developing predictive tools for hydrate deposition. Equipment design considering hydrate prevention and
32、 remediation Enhanced gas sealing technology Multisize pigs Pipeline heating/insulation The SGNTM process,Flow Assurance,Subsea equipment compliance with flow requirementsDeepwater high pressure + low temperature potential hydrate formationLow temperature wax deposition,Pipeline thermo-hydraulic cal
33、culation toolsWax chemical inhibitorsMagnetic tools,Hydrate Plug from gas pipeline,Highly insulated risers and pipelines,New insulation materialsPipe-in-pipe configurationEletrically heated pipelineHot water heated pipelineMain point of concern:- Cost,Eletrically heated pipeline,五、深水海底管线和立管系统,Steel
34、Catenary Riser (SCR) for Ultra-Deepwaters,First SCR being installed on a SS in deepwater by J-lay method,Significant Challenge:Greater heave motions cause more fatigue damage at the touch down region of the riserSavings in time and costs: Hybrid installation solution, i.e., non-critical sections ins
35、talled by Reel Method, critical ones J-lay Method to protect them in the reeling process (impact on the critical riser welds)Monitoring program for the riser behavior: data transmission, raw data processing, storage at a database and post-processing,五、深水海底管线和立管系统,Present Efforts:Study of alternative
36、 configurations for FPSOsRiser monitoring in the fieldFloating hulls with minimized motionsRequirements for construction and installationWelding and NDT techniquesSour service materialsUse of special jumpersDesign criteriaDefinition of fatigue environment conditions with bimodal sea statesFatigue te
37、sting of real samplesEnvironmental dataIntegrity management,五、深水海底管线和立管系统,Collapse of flexible pipes,五、深水海底管线和立管系统,CENPES/PETROBRAS,Collapse and Propagation of Buckles in submarine pipelines,五、深水海底管线和立管系统,Influence of corrosion defects on the burst pressure of pipelines,五、深水海底管线和立管系统,Failure analyse
38、s of rigid pipe Accident at Baia de Guanabara bay,五、深水海底管线和立管系统,PETROBRAS,Failure analyses of flexible pipe Accident at IMODCO III,五、深水海底管线和立管系统,Fatigue of SCRs tested at UFRJ,五、深水海底管线和立管系统,Fatigue of Pipelines tested at UFRJ,五、深水海底管线和立管系统,Full Scale Riser Testsat UFRJ,Riser: 10 ton and 12m. Rig: 4.
39、0 x 5.0 x 20.4 m.Hydraulic System:250 HP (bending) and 175 HP (tension) Tension 250 ton. Bending moment 200 ton.m,五、深水海底管线和立管系统,COPPE/UFRJ,五、深水海底管线和立管系统,Flexible Risers for Ultra-Deep WatersPoints of Concern:Bird Cage formation (technical feasibility)Weight (affects installation costs)Flexible pipe
40、cost,五、深水海底管线和立管系统,Riser Friendly Production Units,五、深水海底管线和立管系统,Hybrid Risers (hydrodynamic behavior decoupled from platform motions)Free Standing Single Riser Riser TowerTension Leg Riser Buoy,五、深水海底管线和立管系统,(1) 新型深水立管支撑系统AC 深水立管支撑系统,水下浮筒罐,单侧配置多立管,双侧配置多立管,图4-9 AC 深水立管支撑系统,快速、安全和灵活安装,不需要大型吊装船,五、深水海底
41、管线和立管系统,The Subsurface Buoy (SSB) concept comprises a buoy moored to the sea bed by tethers serving as an intermediate floating element connecting flexible jumpers to a SCR. Oil flows from a wet Christmas tree through the SCR and at the buoy production changes to the jumpers until it reaches the pro
42、duction unit.,“H” shape: creating some interference between the jumpers and the tethers,Concept from a DeepStar JIP, available for all Petrobras flowlines,Tethered Riser Buoy,Tethered Riser Buoy,The Buoy of new rectangular shape being tested at UFRJ,Advantages of the SSB: Decoupling of riser movemen
43、ts from the production vessel.90% of entire system can be installed without the production platform, anticipating the production.Reduction of top loads.Reduction of pull-in and pull-out loads.It increases the technical viability window of SCR in catenary shape because the jumpers absorb the movement
44、s and decrease the fatigue loads close to the TDP.Reduction of the production vessel stiffness.The jumpers can be installed or replaced using conventional vessels due to less loads.,Tethered Riser Buoy,Tethered riser buoy under construction,The Roncador SSB supporting 19 SCRs at a water depth of 180
45、0m was developed in 2002,(2) 一种新型的水下立管塔系统(Riser Tower),表4-2 水下立管塔系统的特点,五、深水海底管线和立管系统,图4-13 立管塔基础吊装,图4-11 立管塔管束码头装配中,图4-12 Rosa油田的立管塔基础,Greater Plutonio,五、深水海底管线和立管系统,(a) 立管塔上端(通过柔性跨接线和FPSO连接),(b) 立管塔基础和生产管线(计算机仿真),Greater Plutonio: 11个立管,其中3个生产管线,3个注水管线,1个气体注入线,1个服务线,3个气体升举和1个气体升举脐带缆,图 4-14 Greater
46、Plutonio 油田的部分施工图片,Rosa: 25个水下井口,包括14个采油井,11个注水井,并有4个管汇,五、深水海底管线和立管系统,(3) FSHR(自由站立混合立管),(a) FHR,(e) 浮力罐,(b) 基础和立管下部,(d) 张紧链和荷载监视,(c) 立管上部,除柔性跨接管外,其他均可在平台锚固就位前/后安装,适应深水,特别是超深水,可用Technip的Deep Blue安装,不需要特别船只,生产管线与几乎完全传输到基础的立管荷载隔离,应用:2007,巴西,1800 m;2008,GOM, 2,5002,640 m,不易疲劳,可减轻生产平台的总重量,由Technip公司为解决巴
47、西近海P-52平台、Roncador油田恶劣的海洋环境条件、深水Deep Blue安装船的能力、Technip的旗舰产品,以及巴西石油资产退役能力所遇到的特定困难而开发的一种新型混合立管,概念:,特点:,图 4-15 FSHR的各个部件,五、深水海底管线和立管系统,The primary goal of slender well technology is to reduce the drill riser diameter and consequently the rig deckload to make possible the use of second and third genera
48、tion rigs in ultra-deepwater. The technology reduces deep and ultra-deepwater well costs an estimated average of 17%. The first slender well was drilled in 692m of water in Jan., 1998, while the deepest in the Campos Basin in 2851m.Up to 2004, over 200 slender wells have been drilled.,Mooring System
49、s for Ultra-Deepwaters,Challenges and Concerns for SCMs: High available payload penalty on floating units by submerged weight of the mooring lines High cost of mooring lines that use increasing portions of their strength just to withstand their own weight Severe impact on the seafloor layout due to the very long mooring radius and resulting large footprint,