12.2立方根学案.doc

上传人:11****ws 文档编号:2988122 上传时间:2019-05-16 格式:DOC 页数:4 大小:80.50KB
下载 相关 举报
12.2立方根学案.doc_第1页
第1页 / 共4页
12.2立方根学案.doc_第2页
第2页 / 共4页
12.2立方根学案.doc_第3页
第3页 / 共4页
12.2立方根学案.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、112.1.2 立方根 1学习目标:、了解立方根定义。、会求一个数的立方根课前预习计算下列各题: , , , 333 )4.0(.0)2(学生展示问 这个实际问题,在数学上提出怎样的一个计算问题?从这里可以抽象出一个什么数学概念?答 已知乘方指数和 3 次幂,求底数,也就是“已知某数的立方,求某数”即x3a,a 是已知数,求 x1.立方根的概念:如果一个数的立方等于 a,那么这个数就叫做 a 的立方根(cube root)(也叫做三次方根)试一试(1)27 的立方根是什么?(2) 27 的立方根是什么?(3)0 的立方根是什么? 请学生也编三道求立方根的题目,并给出解答2.立方根的表示方法:3

2、.开立方:求一个数的立方根的运算,叫做开立方开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求质疑解难1 求下列各数的立方根:(1) ; (2)-125; (3)-0.008; (4)02782根据上述练习提问:(1)一个正数有几个立方根?是否任何负数都有立方根?如都有,一个负数有几个立方根?0 的立方根是什么?启发学生得出立方根的性质,并通过下表与平方根的有关性质进行比较(2)一个数的平方根和一个数的立方根,有什么相同点和不同点?课堂训练1、 (1)4 3=( ) , =( ) , ( ) 3=6434(2) =( ) , =( ) , ( ) 3=2278(3)0 3=(

3、 ) , ( ) 3=0(4)若 x3=8 则 x= ,若 x3= 8 则 x= ,若 x3=0 则 x= 25 3=( ) ,5 是 的立方根,用式子表示就是 。 = , 是 的立方根,用式子表示就是 21。0 3=( ) ,0 是 的立方根,用式子表示就是 。2、求下列各式的值:(1) (3) (4)37323271036427(2) = =3333当堂检测1、如果 x3=a, 叫做 的立方根。4 3= ,4 是 的立方根,用含根式的式子表示为 (4) 3= ,4 是 的立方根,用含根式的式子表示为 。 的立方根是 81立方根等于自身的数一共有 个,它们是 与 的关系 。3a下列各说法对不

4、对?对打,错打,并把错误改正。().的立方根是.( )改正: ()的立方根是 ( )改正: () 的立方根是 ( )改正: 27131() 的立方根是 ( )改正: 643.求下列各数的立方根:(1)- (2) (3) (4) 8786278514、求下列各式中的 x1) . ) ) ) () 183、一个圆柱的体积是 8m 3,且圆柱的半径与它的高相等,求圆柱的半径。四、交流反思4请思考下面的问题:1.什么叫一个数的立方根?怎样用符号表示数 a 的立方根?a 的取值范围是什么?2.数 a 的立方根与数 a 的平方根有什么区别?3.求一个数的立方根,可以通过立方运算来求五、作业P7 1.2.5

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。