1、3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!第 31 课 直线和圆的位置关系知识点:直线和圆的位置关系、切线的判定和性质、三角形的内切圆、切线长定理、弦切角的定理、相交弦、切割线定理大纲要求:1掌握直线和圆的位置关系的性质和判定; 2掌握判定直线和圆相切的三种方法并能应用它们解决有关问题:(1)直线和圆有唯一公共点;(2)d=R;(3)切线的判定定理 (应用判定定理是满足一是过半径外端,二是与这半径垂直的二个条件才可判定是圆的切线)3掌握圆的切线性质并能综合运用切线判定定理和性质定理解决
2、有关问题:(1)切线与圆只有一个公共点;(2)圆心到切线距离等于半径;(3)圆的切线垂直于过切点的半径;(4) 经过圆心且垂直于切线的直线必过切点;(5)经过切点且垂直于切线的直线必过圆心;(6)切线长定理;(7) 弦切角定理及其推论。4,掌握三角形外切圆及圆外切四边形的性质及应用;5注意:(1)当已知圆的切线时,切点的位置一般是确定的,在写条件时应说明直线和圆相切于哪一点,辅助线是作出过确定的半径;当证明直线是圆的切线时,如果已知直线过圆上某一点则可作出这一点的半径证明直线垂直于该半径;即为“连半径证垂直得切线” ;若已知条件中未明确给出直线和圆有公共点时,则应过圆心作直线的垂线,证明圆心到
3、直线的距离等于半径,即为:“作垂直证半径得切线” 。(2) 见到切线要想到它垂直于过切点的半径;若过切点有垂线则必过圆心;过切点有弦,则想到弦切角定理,想到圆心角、圆周角性质,可再联想同圆或等圆弧弦弦心距等的性质应用。 (3)任意三角形有且只有一个内切圆,圆心为这个三角形内角平分线的交点。考查重点与常用题型: 1判断基求概念,基本定理等的证误。在中考题中常以选择填空的形式考查形式对基本概念基求定理的正确理解,如:已知命题:(1)三点确定一个圆;(2)垂直于半径的直线是圆的切线;(3)对角线垂直且相等的四边形是正万形;(4)正多边形都是中心对称图形;(5)对角线相等的梯形是等腰梯形,其中错误的命
4、题有 ( )(A)2 个 (B)3 个 (C)4 个 (D)5 个2证明直线是圆的切线。证明直线是圆的切线在各省市中考题中多见,重点考查切线的判断定理及其它圆的一些知识。证明直线是圆的切线可通过两种途径证明。3论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。此种结论的证明重点考查了金等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识。考点训练:1如图O 切 AC 于 B,AB=OB=3,BC= ,则AOC 的度数为( )3(A)90 (B)105 (C)75 (D)602O 是ABC 的内心,BOC 为 130,则A 的度数为( )(
5、A)130 (B)60 (C)70 (D)803下列图形中一定有内切圆的四边形是( )(A)梯形 (B)菱形 (C)矩形 (D)平行四边形3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!4PA、PB 分别切O 于 A、B,APB=60,PA=10,则O 半径长为( )(A) (B)5 (C)10 (D)5103 3 3 35圆外切等腰梯形的腰长为 a,则梯形的中位线长为 6如图ABC 中,C=90,O 分别切 AB、BC、AC 于 D、E、F,AD=5cm,BD=3cm,则ABC 的面积为
6、7如图,MF 切O 于 D,弦 ABCD,弦 ADBF,BF 交O 于 E, , ,则A40mCD8BADM= ,AGB= ,BAE= 。8PA、PB 分别切O 于 A、B,AB=12,PA=3 ,则四边形 OAPB 的面积为 139如图,AB 是O 直径,EF 切O 于 C,ADEF 于 D,求证:AC 2=ADAB。10如图,AB 是O 的弦,AB=12,PA 切O 于 A,POAB 于 C,PO=13,求 PA 的长。解题指导: 1 如图ABC 中A90,以 AB 为直径的O 交 BC 于 D,E 为 AC 边中点,求证:DE 是O的切线。3eud 教育网 http:/ 百万教学资源,完
7、全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!2 如图,AB 是O 直径,DE 切O 于 C,ADDE,BEDE,求证:以 C 为圆心,CD 为半径的圆 C 和 AB 相切。3 如图,梯形 ABCD 中,ADBC,ABCD,O 分另与 AB、BC、CD、AD 相切于E、F、G、H,求证:O 直径是 AD,BC 的比例中项。4 已知:AB 是O 的直径,AC 和 BD 都是O 切线,CD 切O 于 E,EFAB,分别交 AB,AD于 E、G,求证:EGFG。独立训练: 1 已知点 M 到直线 L 的距离是 3cm,若M 与 L 相切。则M
8、 的直径是 ;若M 的半径是 3.5cm,则M 与 L 的位置关系是 ;若M 的直径是 5cm,则M与 L 的位置是 。2 RtABC 中,C90,AC6,BC8,则斜边上的高线等于 ;若以 C 为圆心作与 AB 相切的圆,则该圆的半径为 r ;若以 C 为圆心,以 5 为半径作圆,3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!则该圆与 AB 的位置关系是 。3 设O 的半径为 r,点O 到直线 L 的距离是 d,若O 与 L 至少有一个公共点,则 r 与 d之间关系是 。4 已知O 的直
9、径是 15 cm,若直线 L 与圆心的距离分别是15 cm;7.5 cm;5 cm那么直线与圆的位置关系分别是 ; ; 。5 已知:等腰梯形 ABCD 外切于为O,ADBC,若 AD4,BC6,AB5,则O 的半径的长为 。6 已知:PA、PB 切O 于 A、B,C 是弧 AB 上一点,过点 C 的切线 DE 交 PA 于 D,交 PB 于E,PDE 周长为 。7 已知:PB 是O 的切线,B 为切点,OP 交O 于点 A,BCOP,垂足为 C ,OA6 cm,OP8 cm,则 AC 的长为 cm。8 已知:ABC 内接于O,P、B、C 在一直线上,且 PA2PBPC,求证:PA 是O 的切线。9 已知:PC 切O 于 C,割线 PAB 过圆心 O,且P =40,求 ACP 度数。10 已知:过O 一点 P,作O 切线 PC,切点 C,PO 交O 于 B,PO 延长线交O 于A,CDAB,垂足为 D,求证:(1)DCB=PCB (2)CD:BD=PA:CP