人类对光的研究历史.doc

上传人:11****ws 文档编号:3070661 上传时间:2019-05-20 格式:DOC 页数:3 大小:34KB
下载 相关 举报
人类对光的研究历史.doc_第1页
第1页 / 共3页
人类对光的研究历史.doc_第2页
第2页 / 共3页
人类对光的研究历史.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、优优灯具招商网 http:/www.uu00.tv优优灯具招商网 http:/www.uu00.tv光学是一门有悠久历史的学科,它的发展史可追溯到 2000 多年前。 光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前 400 多年(先秦的时代 ),中国的墨经中记录了世界上最早的光学知识。它有八条关于光学的

2、记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。 自墨经开始,公元 11 世纪阿拉伯人伊本海赛木发明透镜;公元 1590 年到 17 世纪初,詹森和李普希同时独立地发明显微镜;一直到 17 世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。 1665 年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。 牛顿在发现这些重要现象的同时,根据

3、光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。19 世纪初,波动光学初步形成,其中托马斯杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。菲涅耳于 1818 年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的” 。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个 18 世纪中,光的微粒流理论和

4、光的波动理论都被粗略地提了出来,但都不很完整。 1846 年,法拉第发现了光的振动面在磁场中发生旋转;1856 年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太 )中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。1860 年前后,麦克斯韦的指出,电场和磁场的

5、改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在 1888 年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频优优灯具招商网 http:/www.uu00.tv优优灯具招商网 http:/www.uu00.tv率的电振子的性质,也不能解释光的色散现象。到了 1896 年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。 对于像炽热的黑体的辐射中能量按波长

6、分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887 年迈克耳逊用乾涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。 电磁感应是指因为磁通量变化产生感应电动势的现象。 电磁灶是应用电磁感应图片电磁感应现象的发现,乃是电磁学领域中最伟大的成就之一。它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革

7、命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。若闭合电路为一个 n 匝的线圈,则又可表示为:式中 n 为线圈匝数, 为磁通量变化量,单位 Wb(韦伯) ,t 为发生变化所用时间,单位为 s. 为产生的感应电动势,单位为 V(伏特,简称伏) 。1900 年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。 1905 年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与

8、物质相互作用时,光也是以光子为最小单位进行的。 这样,在 20 世纪初,一方面从光的干涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性微粒性。爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960优优灯具招商网 http:/www.uu00.tv优优灯具招商网 http:/www.uu00.tv年,西奥多梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962 年产生了半导体激光器;1963 年产生

9、了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自 1958 年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化. 1905 年 9 月,德国物理学年鉴发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于 1

10、916 年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。自 20 世纪 50 年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“傅里叶光学” 。再加上由于激光所提供的相乾光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到 1873 年阿贝提出的显微镜成像理论,和 1906 年波特为之完成的实验验证;1935 年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953 年诺贝尔物理学奖;1948 年伽柏提出的现代全息照相术的前身波阵面再现原理,为此,伽柏获得了 1971 年诺贝尔物理学奖。 在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。