1、第一章核反应堆的核物理基础直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。中子的散射:散射是使中于慢化(即使中子的动能减小) 的主要核反应过程。非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射 射线而返回基态。弹性散射:分为共振弹性散射和势散射。微观截面:一个中子和一个靶核发生反应的几率。宏观截面:一个中子和单位体积靶核发生反应的几率。平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值) 。中子通量
2、密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。瞬发中子和缓发中子:裂变中,99以上的中子是在裂变的瞬间 (约 10-14s)发射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于 1的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。第二章中子慢化和慢化能谱慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。平均寿命:在反
3、应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。慢化密度:在 r 处每秒每单位体积内慢化到能量 E 以下的中子数。分界能或缝合能:通常把某个分界能量 Ec以下的中子称为热中子, Ec称为分界能或缝合能。第三章中子扩散理论中子角密度:在 r 处单位体积内和能量为 E 的单位能量间隔内,运动方向为 的单位立体角内的中子数目。慢化长度:中子从慢化成为热中子处到被吸收为止在介质中运动所穿行的直线距离。徙动长度:快中子从源点产生到变为热中子而被吸收时所穿行的直线距离为 rM。第四章均匀反应堆的临界理论反射层的作用:1. 减少芯部中子泄漏,从而使
4、得芯部的临界尺寸要比无反射层时的小,节省一部分燃料;2. 提高反应堆的平均输出功率。反射层材料选取:1. 散射截面大2. 吸收截面小3. 良好的慢化能力功率分布展平:1. 芯部分区布置;2. 可燃毒物的合理布置;3. 采用化学补偿剂及部分长度控制棒以展平轴向通量分布。第六章栅格的非均匀效应与均匀化群常数的计算空间自屏效应:热中子进入燃料块后,首先为块外层的燃料核所吸收,造成燃料块内部的热中子通量密度比外层的要低,结果使燃科块里层的燃料核未能充分有效地吸收热中子,就是说,块外层燃料核对里层燃料核起了屏蔽作用,通常把这种现象叫做空间自屏效应。最佳栅格:在给定燃料富集度和慢化剂材料的情况下,存在着使
5、栅格无限增值系数达到最大值或临界体积为极小的栅格几何参数,这样的栅格叫最佳栅格。第七章反应性随时间的变化慢饱和裂变产物(SSFP):吸收截面相对较大,浓度随运行时间的增加而缓慢的趋于饱和的;非饱和裂变产物(NSFP):截面很小,达不到饱和。裂变产物中毒:由于裂变产物的存在,吸收中子而引起的反应性变化。堆芯寿期:一个新装料堆芯从开始运行到有效增值系数降到 1 时,反应堆满功率运行的时间。转换比:反应堆中每消耗一个易裂变材料原子所产生新的易裂变材料的原子数停堆周期:全部无控制毒物都投入反应堆内时所具有的反应性。第八章温度效应与反应性控制反应性系数:反应堆的反应性相对于反应堆的某个参数的变化率成为该
6、参数的反应性系数。反应性温度系数:单位温度变化引起的反应性变化。燃料温度系数:由单位燃料温度变化所引起的反应性变化。慢化剂温度系数:由单位慢化剂温度变化所引起的反应性变化。空泡系数:在反应堆中,冷却剂的空泡份额变化百分之一所引起的反应性变化。功率反应性系数:单位功率变化所引起的反应性变化。功率亏损:从零功率变化到满功率时反应性的变化。 0PDd剩余反应性:堆芯中没有任何控制毒物时的反应性。控制毒物:控制毒物是指反应推中用于反应性控制的各种中子吸收体。控制毒物价值:某一控制毒构投入避芯所引起的反应性变化量称为该控制毒物的反肢性或价值。停堆深度:当全部控制毒物都投入堆芯时,反应堆所达到的负反应性。
7、反应性控制的任务1. 采取各种切实有效的控制方式,在确保安全的前提下,控制反应堆的剩余反应性,以满足反应堆长期运行的需要;2. 通过控制毒物适当的空间布置和最佳的提棒程序,使反应堆在整个堆芯寿期内保持较乎坦的功率分布,使功率蜂因子尽可能地小;3. 在外界负荷变化时,能调节反应堆功率,使它能适应外界负荷变化;4. 在反应维出现事故时能迅速安全地停堆,并保持适当的停堆深度。反应堆控制分类1. 紧急控制:当反应堆需要紧急停堆时,反应堆的控制系统能迅速引入一个大的负反应性,快速停堆,并达到一定的停堆深度。要求有极高的可靠性。2. 功率调节:当外界负荷或堆芯温度发生变化时,引入一个适当的反应性,以满足反
8、应堆功率调节的需要。要求既简单又灵活。3. 补偿控制:反应堆的初始剩余反应性比较大,因而在堆芯寿期初,在堆芯中必须引入较多的控制毒物。但随着反应堆运行,剩余反应性不断减小。为了保持反应堆临界,必须逐渐地从堆芯中移出控制毒物。反应性控制方式1. 改变堆内中子吸收2. 改变中子慢化性能3. 改变燃料的含量4. 改变中子泄漏目前反应堆采用的反应性控制方式:控制棒控制;固体可燃毒物控制;化学补偿控制。控制棒控制控制棒控制反应性的快速变化:1. 燃料的多普勒效应;2. 慢化剂的温度效应和空泡效应;3. 变工况时,瞬态氙效应;4. 硼冲稀效应;5. 热态停堆深度。控制棒材料要求:1. 具有很大的中子吸收截
9、面;2. 要求控制棒材料有较长的寿命;3. 要求控制棒材料具有抗辐照、抗腐蚀和良好的机械性能,价格便宜。控制棒价值控制棒积分价值:当控制棒从一初始参考位置插入到某一高度时,所引入的反应性。控制棒积分价值:控制棒在堆芯不同高度处移动单位距离所引起的反应性变化。控制棒之间的干涉效应:当一根控制棒插入堆芯后将引起堆芯中中子通量密度分布的畸变,势必会影响其它控制棒的价值。这种现象称之为控制棒间的相互干涉效应。可燃毒物控制可燃毒物材料的要求:1. 具有比较大的吸收截面;2. 要求由于消耗了可燃毒物而释放出开的反应性基本上要与堆芯中由于燃料燃耗所减少的剩余反应性相等;3. 在吸收中子后,它的产物的吸收截面
10、要尽可能地小;4. 在维芯寿期末,可燃毒物的残余量应尽可能少;5. 要求可燃毒物及其结构材料应具有良好的机械性能。非均匀布置:非均匀布置的主要特点是在可燃毒物中形成了强的自屏效应,使可燃毒物的有效吸收截面减小。化学补偿控制在一回路冷却剂中加入可溶性化学毒物,以代替补偿滓的作用,因此称为化学补偿控制,简称化控。对化学毒物的要求:1. 能溶解于冷却刑中,化学性质和物理性质稳定;2. 具有较大的吸收截面;3. 对堆芯结构部件无腐蚀性且不吸附在部件上。化控主要用来补偿的反应性:1. 反应堆从冷态到热态(零功串)时,慢化剂温度效应所引起的反应性变化;2. 裂变同位素燃耗和长寿命裂变产物积累所引起的反应性
11、变化;3. 平衡员和平衡锣所引起的反应性变化。化控的优点:1. 化学补偿毒物在堆芯中分布比较均匀;2. 化控不但不引起堆芯功率分布的畸变,而且与燃料分区相配合,能降低功率峰因子,提高平均功率密度;3. 化控中的硼浓度可以根据运行需要来调节,而固体可燃毒物是不可调节的;化控不占栅格位置不需要驱动机构,可以简化反应堆的结构,提高反应堆的经济性。化控的缺点:主要缺点是水中硼浓度的大小对慢化剂温度系数有显著的影响,当水中的硼浓度超过某一值时,有可能使侵化剂温度系数出现正值。硼微分价值:堆芯冷却剂中单位硼浓度变化所引起的堆芯反应性的变化量。临界硼浓度:随着反应堆的运行,堆芯中反应性逐渐地减小,所以必须不
12、断的降低硼浓度,使堆芯保持在临界状态。这时的硼浓度称为临界硼浓度。第九章核反应堆动力学反应堆周期:反应堆内中子密度变化 e 倍所需要的时间,也称为反应堆时间常数。倍周期(倍增周期,T d):堆内中子通量密度增长一倍所需的时间。1、 在热中子反应堆中为什么要使用慢化剂?慢化剂的工作原理是什么?并举出几种常用的慢化剂。 反应堆内产生的中子能量相当高,其平均值约为 2MeV;而微观裂变截面在热能区较大,热中子反应堆内的裂变反应基本上都是发生在这一能区,所以在热中子反应堆中使用慢化剂。 在热中子反应堆中,慢化过程中弹性散射起主要作用,因为裂变中子经过与慢化剂和其他材料核的几次碰撞,中子能量便很快降低到
13、非弹性散射的阈能以下,这是中子的慢化主要靠中子与慢化剂核的弹性散射进行。 水、重水、石墨等。2、 缓发中子是如何产生的?在反应堆动力学分析计算中,份额不足 1%的缓发中子与份额超过 99%的瞬发中子相比是否可以忽略不计?为什么? 缓发中子是在裂变碎片衰变过程中发射出来的,占裂变中子的不到 1% 缓发中子不可以忽略不计 缓发中子份额虽然很少,但它的发射时间较长,缓发效应大大增加了两代中子之间的平均时间间隔,从而滞缓了中子密度的变化率。反应堆的控制实际上正是利用了缓发中子的作用才得以实现的。3、 解释碘坑现象和强迫停堆时间。常用反应堆要求不能出现强迫停堆现象,请问在设计上应如何考虑。 刚停堆时,1
14、35Xe 不再吸收中子消失,而一段时间内,135I 衰变成 135Xe 的速率高于 135Xe 的衰变速率,因此 135Xe 核密度随着时间增长,即毒性随时间上升;但在9-10 小时后,堆内 135I 浓度已明显降低,氙的生成速率低于衰变速率,所以毒性随时间降低,这种现象称为碘坑现象。 在碘坑时间内,若剩余反应性小于或等于 0,则反应堆无法启动,这段时间称为强迫停堆时间。 常用反应堆要求不能出现强迫停堆现象,在设计上应留有足够的后备反应性,按照最大氙中毒设计。4、 为什么沸水堆中控制棒是从底部插入堆芯的?沸水堆中水密度在高度方向上变化非常剧烈,堆芯下部的水密度要远高于堆芯上部的水密度,故堆芯的
15、下部中子通量密度要比上部大,控制棒由下向上插入可以提高控制棒的效率,同时还可以展平轴向功率。5、 如何保证压水堆慢化剂温度系数为负值?举例说明负温度系数对反应堆安全运行作用。 为了保证慢化剂温度系数为负值,设计时要注意水铀比,保证处于欠慢化区;同时要注意控制硼浓度不要超过最大值。 例如,由于误操作或其他原因,在运行过程中控制棒突然上提了一段,致使 k 突然上升,这时中子通量密度将骤然增加,温度也将突然上升,若反应堆具有负温度系数,则随着温度升高,k 值将变小,从而使中子通量密度下降,有自动降温以利于安全的趋势。6、 反应堆堆芯燃料管理的主要任务是什么?反应堆堆芯燃料管理的主要任务是在满足电力系
16、统能量需求和在电厂设计规范和安全的要求下,为电厂的运行循环做出其经济安全运行的全部决策。主要包括下列变量的确定:新燃料的富集度,批料数或一批换料量,循环长度,循环功率水平,燃料组件装载方案,控制毒物的布置和控制方案。7、 简述热中子反应堆中子循环过程,并写出四因子公式。 一代热裂变中子,由于 238U 的快裂变,中子数增加到 倍。这些快中子有一部分泄露出堆外,留在堆内的中子在慢化过程中经过共振能区,又被吸收了一部分。热中子也会有一部分泄露出堆外,留在堆内的热中子,一部分被燃料吸收,一部分被结构材料、慢化剂吸收。被燃料吸收的中子一部分发生辐射俘获反应,一部分发生裂变反应,生成新的裂变中子。 四因
17、子公式 K= pf,其中 为快中子增殖系数;p 为逃脱共振吸收率;f 为热中子利用系数; 为热中子裂变因数。8、 为什么反应堆温度变化后,反应性会发生改变? 燃料温度升高时由于多普勒效应,将使共振峰展宽,共振吸收中的“能量自屏现象”和“空间自屏”效应都将减弱,从而使有效共振积分增加,逃脱共振吸收概率减小,有效增殖因子下降。 慢化剂温度升高时,慢化剂密度减小,慢化剂相对燃料的有害吸收将减小,使有效增殖因子增大,同时是慢化剂的慢化能力减小,因而共振吸收增加,有效增殖因子下降。9、 分别说明内-外、外- 内装料方案的布置方式及其优缺点。 内-外装料方案中,芯部自馁向外分为三区,新料装在堆芯最内区,少
18、过一个循环的燃料组件布置在中间区,最外区布置烧过两个循环的燃料。优点:燃料燃耗比较均匀,中子泄露损失小;缺点:寿期初功率峰因子大,限制功率输出。 外-内装料方案中,新燃料在最外区,烧过一个循环的布置在中间区,最内区布置烧过两个循环的燃料。优点:展平堆芯中子通量密度分布,功率峰因子下降;缺点:泄露损失大,循环长度缩短。10、大型压水堆中通常采取哪些方法来控制反应性?为什么? 控制棒,可燃毒物,化学控制剂 控制棒采用对中子吸收截面大的物质制成,可以快速有效地改变反应堆内的反应性;采用化学控制剂,如将对中子吸收截面大的硼溶解在慢化剂中来控制反应性,这样可以使反应堆的反应性变化比较均匀,但调节过程缓慢
19、;采用可燃毒物,可以减少控制棒的数量和水中的硼浓度,如硼是利用硼“燃耗”较快的特点,从而使可燃毒物管的中子吸收能力随反应堆燃耗加深而明显降低,这种补偿不需外部控制,是自动进行的。11、反应堆可以在任意功率水平下达到临界状态,这一说法是否正确,为什么?正确。因为临界状态是指反应堆内中子的生灭到达一种平衡状态,而与反应堆的功率水平无关,如不考虑热工条件,从理论上讲,反应堆可以在任意功率水平下达到临界状态。1、 设在无限大非增值的扩散介质内有一个点源,源强为 S 中子每秒,各项同性地在介质内扩散而达到稳定状态,请列出单速中子扩散方程并给出边界条件。条件:1 在扩散方程成立区域内,中子通量密度必须是个非负实数,处处有界;2 在扩散性质不同的介质交界面附近,两侧的中子通量密度以及中子流密度矢量在界面上的法向分量必须相等;3 在介质与真空交界面上,边界条件为:在无物理边界以外的外堆边界上,通量密度为 0。2、 求控制棒位置方法。 以中子计数的倒数为纵坐标,控制棒的的位置为横坐标,求纵坐标为零处的位置。