定向扩散路由协议外文翻译.doc

上传人:hw****26 文档编号:3100204 上传时间:2019-05-21 格式:DOC 页数:19 大小:372.50KB
下载 相关 举报
定向扩散路由协议外文翻译.doc_第1页
第1页 / 共19页
定向扩散路由协议外文翻译.doc_第2页
第2页 / 共19页
定向扩散路由协议外文翻译.doc_第3页
第3页 / 共19页
定向扩散路由协议外文翻译.doc_第4页
第4页 / 共19页
定向扩散路由协议外文翻译.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、1定向扩散的无线传感器网络Chalerek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heidemann, and Fabio Silva摘要-进展处理器,内存和无线技术将能够连接传感,通信和计算的能力小,价格便宜的节点。这些节点的网络可以协调进行的环境现象分布式传感。在本文中,我们探讨了定向扩散范式这种协调。定向扩散是以数据为中心的所有通信进行命名的数据。在定向扩散为基础的网络中的所有节点都应用感知。这使得扩散通过选择良好的经验和路径,通过网络(例如,数据聚合)缓存和处理数据,以达到节约能源。我们探索和评估使用定向扩散的一个简

2、单的远程监控传感器网络解析和实验。我们的评估表明,定向扩散可以达到显著的节能效果,并且可以根据所调查的情况下超越传统的理想化方案(例如,全网组播) 。1 介绍在不久的将来,先进的处理器,内存和无线技术将使小和廉价的节点能够进行无线通信和显著计算。这些设备加入感应功能将会使分布式微感 - 一个在节点的集合坐标,实现活动更大的传感任务成为可能。这种技术可以彻底改变信息收集和在许多情况下的处理。规模大,动态地改变,并且健壮的传感器网络可以部署在恶劣的物理环境,如远程地理区域或有毒的城市地区。他们也将实现低维护传感更良性的,但不太方便,环境:大型工业厂房,飞机内饰等。 。为了激励我们的研究,考虑的怎么

3、这么传感器网络将致力于这个简化模型。一个或多个操作人员构成,在网络中的任何节点,表单的问题:“有多少行人,你的地理区域 X观察?” ,或“告诉我在什么方向的车辆在区域 Y移动” 。这些查询中指定的区域导致被委派传感器开始收集信息。一旦个别节点检测到行人或车辆的运动,它们可能会影响相邻节点协作,消除歧义行人位置或车辆移动的方向。然后其中一个节点可能会报告的结果返回给操作人员。通过健壮性,可伸缩性和能效要求的启发,本文探讨了新的数据传播范式,例如传感器网络。这一模式,我们称之为定向扩散 1,是以数据为中心。由传感器节点产生的数据被命名为属性 - 值对。节点通过发送兴趣名为数据请求的数据。数据匹配的

4、兴趣,然后“拉”下来,对那个节点。中间节点可以缓存,或转换数据,并且可以直接基于以前缓存的数据(第 2节)的兴趣。使用这种通讯模式,我们的例子中可以如下方式实现。操作人员的查询将被转化为扩散(如广播,地理路由)对在区域 X或 Y节点,当在该地区的一个节点收到一个零利率,它会激活其传感器,开始收集有关行人的信息。当传感器报告行人的存在,该信息返回沿息传播的反向路径。中间节点可能会汇总数据,例如,更准确地引脚通过组合的些许传感器报告指出行人的位置。定向扩散的一个重要特征是,兴趣和数据传播和聚集是通过局部的相互作用(在一些附近的邻居或节点之间的消息交换)来确定。定向扩散是显著不同,其中节点通过其端点

5、标识,节点间通信层叠在网络内设置的端至端传送服务的 IP式通信。在本文中,我们描述了定向扩散,并说明这种模式的传感器查询,传播和处理的一个实例。我们表明,采用定向扩散可以实现强大的多路2输送,凭经验适应网络工作路径的一小部分,并达到显著的节能效果时间中介节点聚合反应的查询(第 4章) 。我们还实施了几个小的传感器平台定向扩散;我们描述在第5节我们实现设计和我们的经验。在本文中,我们概述了定向扩散范式,解释其主要特点,并在一些细节描述了定向扩散模式的车辆跟踪传感器网络(第 2节)的特定实例。我们指定哪些地方法规实现的利息和数据传输所需的行为。在此过程中,我们将展示如何在定向扩散模式不同于传统的网

6、络和定性认为,这种模式提供了缩放,健壮性和能源效率方面的好处。我们通过定向扩散(第 4节)和实施(第 5条)的详细的数据包级仿真量化其中的一些好处。C. Intanagonwiwat,R. Govindan,学者海德曼和 F席尔瓦与 USC/信息科学研究所。 D.雌激素是与加州大学洛杉矶分校。这项工作的早期版本出现在 ACM MobiCom的 2000论文集17。这项工作是由美国国防高级研究计划局授予下 DABT6399-1-0011支持。 1Van雅各布森提出“扩散”命名的属性数据,这个类的应用程序,后来导致了定向扩散的设计理念。(a)兴趣传播 (b)梯度建立 (c)数据传播以及路径加强图

7、1 定向扩散路由协议的过程2定向扩散定向扩散是由几个要素:兴趣,数据消息,渐变和增强。有兴趣的消息是查询或询问它指定一个用户想要什么。每个兴趣包含所支持的传感器网络进行数据的感测任务的描述。典型地,在传感器网络中的数据是一种物理现象的收集或处理信息。这样的数据可以是一个事件,这是感测到的现象的简短描述。在定向扩散,数据使用属性-值对的名字命名。感测任务(或者其子任务)的传播在整个传感器网络工作有兴趣命名的数据。这个传播设置了网内梯度设计的“画”事件(即数据相匹配的利息) 。具体而言,梯度是接收有兴趣的每个节点创建方向状态。的梯度指向方向设置朝向从其接收了感兴趣的相邻节点。活动开始流向兴趣携带多

8、梯度路径的发起人。传感器网络增强 1 ,或少数这些路径。图 1示出这些元素。在本节中,我们描述的扩散特别提到一种特殊的传感器网络,一个支持位置跟踪任务的这些元素。正如我们将要看到的,有几个设计选择展示自己,即使在扩散这个特定实例的上下文中。我们对这些设计选择阐述,同时介绍了无线传感器网络的设计。我们的初步评估(第 4节)这些重点去选择符号的一个子集。不同的设计选择导致扩散的不同变体(参见16另一种变型) ,此外,尽管我们描述这种扩散变种基于速率的应用,扩散也适用于事件触发应用程序。2.1命名3在定向扩散,任务描述被命名,例如,描述一个任务属性 - 值对的列表。 A车辆跟踪任务可能被描述为(这是

9、一个简单的描述,请参见第 2.2节有详细介绍):键入=轮式车辆/检测车辆的位置 间隔时间=20 毫秒/将事件发送每 20毫秒 持续时间=10 秒/为接下来的 10秒 矩形= -100,100,200,400/从内部传感器 为了便于说明,我们选择了分区域的代表性,有一些坐标系上定义的矩形;在实践中,这可能是 基于 GPS坐标。 直观地说,任务描述指定数据相匹配的属性的兴趣。因为这个原因,这样的任务描述被称为一个兴趣。在回应兴趣发出的数据也被命名使用类似的命名方案。因此,例如,一个传感器,用于检测轮式车辆可能会产生以下数据(参见 2.3节的一些属性的说明):键入=轮式车辆/类型的车辆看到 这种类型

10、的实例=卡车/实例 位置=125,220/节点位置 强度=0.6/信号幅值测量 信心=0.85/信心在比赛中 时间戳=1 点 20分 40秒/事件发生时刻给定一组由一个传感器网络支持的任务,那么,选择一个命名方案是在对设计定向扩散的第一步网络。对于我们的传感器网络中,我们选择了一个简单的属性值基于兴趣和数据的命名方案。在一般情况下,每个属性具有一个相关的值的范围。例如,属性类型的范围是一组代表的移动物体(车辆书代码值,动物,人类) 。属性的值可以是其范围内的任意子集。在我们的例子中,感兴趣的属性类型的值是对应的轮式车辆还有其他的选择属性值范围(例如,分层)等命名方案(如故意名称1 ) 。一些程

11、度上命名方案的选择会影响任务的表现力,并可能影响扩散算法的性能。在本文中,我们目标是获得扩散模式的初步认识。出于这个原因,可以命名方案的探索已经超出了本文的范围,但是我们已经开始在其他地方的探索 14 (参见第 5章) 。2.2兴趣与梯度 第 2.1节的命名任务描述构成一个跨估在一些利息通常是注入网络(可能是任意的)节点的网络中。我们使用术语汇来表示这个节点。2.2.1兴趣传播由于我们选择的命名方案,我们现在描述的兴趣是如何通过传感器网络的扩散。假设一个任务,一个指定类型和矩形,10 分钟的持续时间和 10毫秒的时间间隔,被实例化的网络中的特定节点。时间间隔参数指定事件的数据速率;因此在我们的

12、例子中,指定的数据速率为每秒 100个事件。此汇聚节点记录了任务;任务状态从节点的工期属性指定的时间后清除。对于每个活动任务,水槽周期性地广播一个在表面的消息到多个邻居节点(更有效的方法来发送兴趣后面将要进行讨论) 。这最初的兴趣包含指定的矩形和持续时间属性,但包含了更大的时间间隔属性。直观地看,这最初的兴趣可能会被认为是探索性的;它试图确定是否有确实是任何传感器节点该检测轮式车辆要做到这一点,初次试探4性的兴趣指定一个低数据速率(在我们的例子中,每秒 1个事件) 2 。在第 2.4节中,我们描述了如何将所需的数据速率是强化来实现。于是,最初的兴趣采用以下形式:键入=轮式车辆 间隔=1 秒 矩

13、形= -100,200,200,400。 时间戳=1 点 20分 40秒/ HH:MM:SS 终止时间=1 时 30分 40秒之前我们介绍了如何利益的处理,我们强调的是,兴趣是软态 19 , 29 , 32 ,将通过水槽周期性地刷新。要做到这一点,水槽简单地重新发送相同的权益,单调递增的时间戳属性。这是必要的,因为兴趣不可靠整个网络传播。刷新率是一个协议的设计参数折衷的开销增加健壮性失去兴趣。每个节点维护利益兴趣缓存。在缓存中的每一项对应一个不同的兴趣。两种利益是不同的,在我们的例子中,如果他们的属性类型的不同,或它们的矩形属性(可能部分地)不相交。在高速缓存中兴趣列表不包含关于水槽但几乎紧接

14、前一跳的信息。因此,不同范围活动动的兴趣。我们的定义的特殊兴趣也让兴趣聚合。两个兴趣 I1和I2 ,具有相同的类型,完全重叠矩形的属性,可以,在某些情况下,表示与单个息条目。其他兴趣聚合是未来研究的一个课题。一个条目的缓存有几个字段。一个时间戳字段表示过去的时间戳 3收到匹配的兴趣。的兴趣条目还包含几个梯度字段,每一个邻居。每个梯度包含一个数据速率要求的领域指定的邻居,源自于兴趣的间隔属性。它还包含一个时间字段,源自于时间戳和到期利益的属性,并指示近似一生的兴趣。这个时间必须超过网络延迟。当一个节点收到感兴趣时,它检查是否在学习存在于缓存中。如果匹配条目不存在(匹配确定通过上述定义指定的不同的

15、利益),节点创建一个条目。感兴趣的参数条目实例化从接收到的利益。这个条目有一个梯度对邻居的利益,与指定的事件数据速率。在我们的例子中,一个邻居的下沉将设立一个兴趣条目的梯度每秒 1事件向下沉。为此,它必须能够区分个体的邻居。任何本地独特的邻居的标识符可以用于一目的。这样的例子标识符包括 802.11 MAC地址8,蓝牙13集群地址,或本地独特的临时标识符11。如果存在一个感兴趣的条目,但没有梯度的发送这方利益,节点添加一个梯度与指定值。它还更新条目的适当的时间戳和持续时间字段。最后,如果有一个入口和一个梯度,节点只需更新的时间戳和持续时间字段。在 2.3节中,我们描述如何使用渐变。梯度届满时,

16、从其兴趣条目删除。并不是所有的梯度将到期在同一时间。例如,如果两个不同的水槽表达模糊,利益超期时间不同,一些网络中的节点有兴趣加入不同梯度过期时间。当所有渐变为感兴趣的条目已经过期,兴趣条目本身从缓存中删除。收到感兴趣后,一个节点可能决定转发其邻国的一些子集感兴趣。邻居节点,这似乎感兴趣来自发送节点,尽管它可能来自一个遥远的水槽。这是当地一个交互的一个例子。通过这种方式,兴趣分散在整个网络。并不是所有的兴趣收到重发。一个节点可能抑制收到兴趣如果它最近重发一个匹配的兴趣。一般来说,有对邻居几种可能的选择(图 2) 。最简单的方法是重新播出的利益对所有邻居。这等同于在整个网络泛滥的兴趣;在没有关于

17、它的信息的传感器节点都可能能够满足在表面,这是唯一的选择。这也是我们模拟在第 4节的替代品。在我们的例5子传感器网络,它也可以是能够进行地理路由,使用一些文献中所描述的技术 23 ,34, 7 。这可以限制拓扑范围为兴趣扩散,由此导致能量节省。最后,在一个静止的传感器网络中,节点可能会使用缓存数据(参见 2.3节)直接利益。例如,如果在响应到一个较早的兴趣,从一些派出一些邻居的数据听过一个节点由属性类型指定的区域内的传感器,它可以引导这种兴趣到 A ,而不是广播到所有的邻居。扩散元素 设计选择兴趣传播洪泛基于位置的限制或定向洪水定向传播基于先前缓存的数据数据传播强化单一路径交付多路径交付质量选

18、择性沿着不同的路径多路径交付与概率转发数据缓存与聚合健壮的数据交付在面对节点的失败为协调传感和数据减少兴趣方向路径加强决定何时来加强的规则多少邻居加强的规则负强化的机制和规则图 2 部分设计的空间扩散(a)梯度建立 (b) 强化 (c)复合源 (d)多个水槽 (e)修复图 3 扩散不同方面的说明2.2.2建立梯度 图 3(a)示出了 通过传感器领域被洪水淹没的情况下建立的梯度。不同的是简化 图 1描述(b)条,注意到每对相邻的 节点建立对彼此的渐变。这是一个关键 因此当地的相互作用。当一个节点收到兴趣 从它的邻居,它没有办法知道是否是 兴趣是响应一个它发送出去较早,或者是相同的 从另一个兴趣下

19、沉的“另一边”的邻居。 这样的双向梯度引起的一个节点接收一个 从每个邻居低数据速率的事件副本。但是,因6为我们后来证明,这种技术可以使快速恢复 。从失败的路径或经验更好的路径加固 (2.4 节) ,而不会招致持续循环(2.3 节) 。请注意,我们的传感器网络,渐变指定既是数据速率和在其中传送事件的方向。更一般地,渐变指定一个值和方向。定向 扩散模式使设计师可以自由地连接不同语义梯度值。我们已经表明两个例子梯度使用。图 1(c)隐式二进制描述重视梯度。在我们的传感器网络,梯度有两种确定事件报告率值。在其他的传感器网络,梯度值可能被用于,例如,概率性转发的数据沿不同的路径,实现一些测量负载平衡(图

20、 2) 。综上所述,兴趣传播建立的网络状态网络或其部分) ,方便是“拆”的数据对下沉。息传播规则是局部的,而且有若干相似之处加入传播的一些互联网组播路由协议 10 。一个关键的区别在于加入传播可以利用单播路由表,直接朝着联接源,而兴趣的传播不能。在本节中,我们描述了兴趣传播规则对于特定类型的任务。更一般地,一个传感器网络可支持多种不同的任务类型。兴趣传播规则可以是用于不同的任务类型的不同。例如,的形式的一个任务类型“计数明显轮式数在矩形 R的车辆看到,在未来T秒“不能利用事件数据传输速率为我们的例子一样。然而,一些利息传播元素类似于两个:形式缓存项,利息重新分配规则等。在我们的实现(第 5章)

21、 ,我们已经扑杀这些相似之处成在每个节点处的扩散基质,从而使传感器网络设计可以使用的兴趣繁殖技术(或一库就此而言,在数据后面的章节中讨论的规则针对不同的任务类型的处理和加固) 。2.3数据传输 传感器节点是指定的矩形内处理兴趣如前一节中所述。此外,该节点任务的本地传感器开始采集样品(保存电源,传感器关闭,直到任务) 。在本文中,我们不讨论的目标识别算法的细节。简言之,这些算法简单匹配采样波形对库的预采样的,存储的波形。这是基于这样的观察该轮式车辆具有不同的声音或震波的体积比,例如,一个人。采样波形可以存储的波形匹配不同程度;该算法通常一定程度的信心与比赛相关联。此外,采样的波形的强度可粗略地表

22、示距离的信号来源,虽然也许没有方向。检测的目标传感器节点搜索其兴趣缓存匹配兴趣的条目。在这种情况下,匹配的条目是一个其矩形包括在传感器位置,以及条目的类型相匹配的检测目标的类型。当它找到一个,它计算的最高它的所有传出的梯度中要求事件发生率。该节点任务的传感器子系统产生的事件样本在这个最高的数据传输速率。在我们的例子中,这个数据速率最初是每秒 1个事件(直到加固应用,第 2.4节) 。源然后发送给每个邻居其中它有一个梯度,事件描述的形式每秒钟:类型=轮式车辆/类型的车辆看到 这种类型的实例=卡车/实例 位置=125,220/节点位置 强度=0.6/信号幅值测量 信心=0.85/信心在比赛中 时间

23、戳=1 点 20分 40秒/本地事件产生的时间这个数据消息是,实际上,单独的单播到相关的邻居。 (所用的确切机制是无线的MAC层的功能并能对性能有显著影响,因为评估第 4.4节。 )接收数据消息从它的邻居节点试图找到在缓存中的匹配兴趣的条目。匹配规则为在前面的段落中描述。如果不存在匹配,数据电文丢弃。如果存在匹配,则该节点会检查数据缓存具有匹配的兴趣条目相关联。这种缓存跟踪最近看到的数据项。它有几7个潜在的用途,其中之一是环预防。如果接收到的数据报文有匹配的数据高速缓存条目,数据电文丢弃。否则,所接收的消息是添加到数据高速缓存和数据消息重新发送到该节点的邻居。通过检查其数据高速缓冲存储器中,一

24、个节点可以判断接收到的事件 4的数据传输速率。重新发送一个接收到的数据报文,一个节点需要研究兴趣匹配项的渐变列表。如果所有梯度的具有数据率大于或等于输入的事件发生率,本点可以简单地发送接收的数据消息到适当的邻居。然而,如果一些梯度具有较低的数据速率比其他(所造成的选择性增强的路径,第 2.4节) ,那么该节点可以下变频到合适的梯度。例如,考虑一个节点已接收的数据以每秒 100个事件,但其梯度一项(如,组建了一支由第二水槽发起一个模糊的任务与更大的间隔) ,每秒 50个事件。在这种情况下,该节点可以只发送对相应的邻居每隔事件。或者,它可能会插在一个应用程序特定的方式连续两次事件(在本例中,它可能

25、会选择样品具有较高的信心匹配) 。环路预防和下变频说明嵌入的所有节点应用语义(图 2 )的功率。虽然这种设计是不相关的传统网络,它与应用程序特定的传感器网络是可行的。事实上,正如我们在 4.4节中,它可以显著提高网络性能。在我们的模拟在第 4节,作为简化,我们包括在事件描述的数据传输速率。2.4加固路径建立和截断 在我们所描述的,到目前为止该计划,水槽最初并多次扩散的权益,低速率事件通知。我们称这些试探性的事件,因为它们是用于路径的设置和维修。我们呼吁设立探索性活动探索梯度的梯度。一旦源检测到匹配的目标,它发出试探性的事件,可能是沿着多条路径,向下沉。水槽启动后接收这些探索性的事件,它强化一个

26、特定的邻居,以提取的真实数据(即事件在更高的数据速率允许目标高品质跟踪) 。我们称接收高品质的跟踪事件数据梯度的建立。2.4.1路径强化建立在一般情况下,此新颖的定向扩散的功能是通过从动局部规则数据实现的。这种规则的一个例子是加强任何邻居从该节点接收到一个以前看不见的事件。为了加强这个邻居,水槽重新发送原利率的消息,但有较小的间隔(更高的数据速率):类型=轮式车辆 间隔时间为 10ms 矩形= -100,200,200,400。 时间戳=01:22:35 终止时间=1 时 30分 40秒当相邻节点接收到这个兴趣,它发现它已经朝着这个邻居的渐变。另外,它注意到了发送方的利益指定一个更高的数据速率

27、比以前。如果这个新的数据速率也比任何现有的梯度较高(直觉,如果从这个节点“流出”有所增加) ,节点也必须加强,至少有一个邻居。它是如何做到这一点?该节点使用其数据缓存于此目的。再次,相同的局部规则选择适用。举例来说,这个节点可以选择从他们第一次收到最新的邻居事件相匹配的利益。另外,它可能会选择从最近收到的新事件的所有邻居。这意味着我们加强了邻居,只有在发送试探性事件。很显然,我们并不需要加强邻居已经在发送流量更高的数据传输速率。这是我们评估在第 4节的替代品。通过对本地交互顺序,一个路径是从源节点到汇聚节点建立传输数据。8我们上面描述的本地规则,然后,选择一个经验低延迟路径(图 3( b)示出

28、,可导致该路径时的水槽强化的路径) 。它是非常活泼的变化,路径质量;每当一个路径传送的事件比别人快,信宿尝试使用这条道路画下去高质量的数据。然而,因为它是由接收一个新的事件触发时,这可能是浪费资源。更多复杂的局部规则是可能的(图 2) ,包括选择该邻居从其中大多数事件已被接收,或者邻居的一贯发送事件等邻居节点之前。这些选择,以提高稳定性权衡反应。2.4.2路径为建立多源和汇在描述加固到目前为止,我们可能已经出现了隐式描述一个单源的情况。事实上,这些规则我们已经描述多源工作。为了说明这一点,考虑图 3(c ) 。假设最初所有的初始梯度是探索性的。根据本拓扑结构,从源节点到汇聚节点的数据通过两个相

29、邻的节点 C与 D传输,说 C有一贯较低的延迟,我们的规则将只到 C强化的路径(这是在图所示) 。但是,如果水槽通过 D听到 B的事件较早,但 A的事件 5较早通过 C ,水槽将尝试从两个邻居(未显示)提取高质量的数据流。在这种情况下,接收器得到两源从两个邻居的数据,能源效率低下的一个潜在来源。能够避免这样的问题增加了一些复杂性16。同样,如果两个水槽表达相同的利益,我们的利益传播,梯度建立和加强规则的正常工作。不失一般性,假定水槽中的 Y图 3(d )已增强的高品质的路径的源。但是请注意,其他节点继续接收试探性事件。当一个操作人员的任务的网络在水槽 X中相同的兴趣,X 可以使用强化规则来实现

30、显示的路径。要确定最好的经验路径,X 无需等待数据相反,它可以利用其数据缓存立即提取高质量的数据向它的自我。2.4.3局部修复的故障路径到目前为止,我们已经描述了加固是由一个接收器触发的情况。然而,在定向扩散,其中调解的节点以前增强路径可以申请加固规则。这是有用的,使之发生故障或降级的路径局部修复。失利原因或降解其中已包括节点的能量消耗,并影响通讯(例如,障碍)的环境因素。考虑图 3(e ) ,在其中源极和节点 C降解和事件之间的链路的质量,经常损坏。当 C检测到这种退化 - 无论是注意到,该事件从它的上游邻居(源)报告率现在是低,或实现其他邻居有被发送以前看不见的位置估计 - 它可以应用增强

31、的规则来发现在图中所示的路径。最终, 负面强化了直接链接到源(图中未显示) 。我们的描述至今掩盖了这样一个事实:加固规则直接应用将导致有损连接器的下游的所有节点也开始增强程序。这最终将导致 1凭经验好的路径的发现,但可能会导致资源浪费。避免这种情况的一个方法是 C插入位置估计它接收的事件,以便下游节点仍然认为高质量的跟踪。5注意定向扩散、水槽将无法将一个源与一个事件。因此,“事件”是有些误导。我们真正的意思是,数据生成的区分内容从数据中生成的。2.4.4道路截断使用负强化上面描述的算法(2.4.1 节)可以导致多个路径被强化。例如(图 4(a),如果沉了加强了邻居,然后从邻居接收一个新的事件

32、B,这将增强路径通过 B 6。如果路径通过B(即持续更好。,B 发送事件)之前,我们需要一种机制来负面强化通过的路径。负强化的机制之一是软状态,即超时,网络中的所有数据梯度,除非他们明确加强。使用这种方法,水槽将定期加强邻居 B,并停止强化邻居 a .梯度沿路径通过最终会降低探索性梯度。另一种方法,我们在本文评估,是明确降低路径通过发送一个负强化的信息 A在这基于速率扩散,负强化是利益与降低数据率。当收到这个兴趣,其降解梯度向9下沉。此外,如果所有的梯度现在探索性,负强化这些邻居已经发送数据(而不是探索事件)7。这个序列的本地交互确保路径通过迅速退化,但在资源利用率增加的成本。完成我们的负强化

33、的描述,我们需要指定当地规则节点使用,以决定是否负强化的邻居。注意,这个规则是正交的选择负强化的机制。一个合理的选择这样的规则是消极强化的邻居没有收到新事件(即。,其他邻居持续发送事件之前的邻居)在一个窗口的事件或时间 T。当地规则我们在第四节是基于评估的时间窗口中,选择在我们的模拟 2秒。这样的规则有点保守和能源效率低下。例如,即使一个事件十是收到第一次从邻居,邻居的水槽不会负强化。其他变体包括负强化少,邻居的新事件已收到。2.4.5循环使用负强化去除除了抑制高延迟或损耗路径,我们当地的负强化规则也用于循环删除,因为循环路径没有交付事件前 8(图 4(b)。尽管循环消息将立即抑制使用消息缓存

34、,一般情况下,我们仍将受益于删除资源节约的循环路径。然而,这样的循环删除并不总是适当的,专门为一些共享高速与多个源和汇梯度地图。例如(图 4(c),如果两个发送区分事件来源,梯度 c和 C-B不应该被截断,因为他们每个人都有必要提供事件为特定的源库。虽然这种梯度可能提供一些循环事件,他们也始终如一地交付新事件。负强化与我们的保守统治,这些梯度不会负强化。6这条路可能是也可能不是完全不相交的路径通过邻居 A . 7这当地规则的作品即使通过的路径和路径通过 B部分联合。联合链接不会消极强化,除非路径都是消极的加强。8 只考虑到邻居,探索性活动首先是增强,一个可能认为循环路径不会钢筋(特别是对于单源

35、水槽场景)。然而,增强路径在一个给定的探索性活动可能不同于那些在前几轮。虽然没有强化循环路径,一个加强联盟路径可以包含来自多个轮循环。(a)多路径 (b)一个可移动的循环 (c)一个不可移动的循环图 4 负强化的路径截断和循环去除此外,即使没有循环,它仍然是合理的保持我们的负强化规则不会保守,这样有用的路径截断。例如(图 3(c),两种来源可能持续发送区分事件,但他们也会偶尔发送相同的事件虽然。虽然来自不同的来源、扩散的相同的事件被认为是重复 9。的路径从一个来源将截断如果负强化规则太激进的反对重复。相反,鉴于我们保守的规则,没有来源负强化。2.5讨论引进的各种元素的扩散,我们也含蓄地描述一个

36、特定兴趣-属性设置渐变画下来的数据。定向扩散范式本身不限制设计师这个特殊的用法。其他用法也是有可能的,比如一个节点可能传播数据在没有利益的情况下,隐式地设置渐变时这样做。这是有用的,例如,自发传播的一些部分传感器领域的一个重要事件。传感器节点可以使用此警告其他传感器节点的活动。此外,其他设计选择为每个元素的扩散也可能的(参见图 2)。我们的描述指出了扩散的几个关键特性,以及它是如何不同于传统的网络。首先,扩散是以数据为中心;在扩散为基础的传感器网络的所有通信使用的兴趣来指定命名的10数据。第二,在扩散的所有通信是邻居到邻居,不像端至端在传统的数据网络的通信。换句话说,每一个节点是在传感器网络中

37、的“结束” 。在这个意义上,有一个传感器网络中没有“路由器” 。每个传感器节点可以解释数据和利率的消息。这种设计的选择是由任务特异性传感器网络的理由。传感器网络作品不是通用的通信网络。三,传感器节点并不需要有全局唯一标识符或全局唯一的地址。节点,但是,确实需要邻里之间的区别。最后,在基于 IP的无线传感器网络,例如,传感器数据收集和处理可能会对每个由专门的服务器可能,一般来讲,可以远离感测到的现象去除的集合形成。在我们的传感器网络中,由于每个节点可以缓存,聚合,和更一般地,处理消息,通常需要执行协调感测接近所感测到的现象。9在扩散,事件是独立于他们的来源(即,节点将无法向源与事件相关联) 。扩

38、散的当前实例只维护高速率的路径,沿着该有用的(新的)的数据一致地传送,而不管源。因此,通常,我们不保证将有至少一个高速率的路径从每个源到每个接收器(例如,当一些来源不产生有用的数据) 。扩散显然与传统的网络数据狂胜 ING算法。从某种意义上说,它是一种反应式路由技术,因为“路线”按需建立。然而,它不同于在几个方面其他临时反应式路由技术(参见第 6节) 。首先,没有试图找出源之间的一个无环路的路径和水槽的数据传输开始前。相反,约束或定向泛滥是用来设置的路径的多重性,和数据消息最初冗余地沿着这些路径发送。第二,此后不久,加固试图减少这种多重性的路径,以一个小数目,是根据经验观察路径的性能。最后,消

39、息缓存用于执行环路避免。利息和梯度设置机制本身并不能保证无环路路径之间的源和汇。为什么要设计这种特殊的选择吗?在这个重新搜索开始时,我们有意识地选择了探索建立严格使用本地(邻居到邻居)通信网络路径的路径设置算法。这一选择背后的直觉是观察,物理系统(如蚁群5)是建立传输路径使用这种通信规模良好,而且非常强大的(参见第 6节) 。但是,使用严格的本地通信意味着路径设置不能使用全局拓扑指标;本地通信意味着,只要一个节点都知道,它从邻居接收到的数据从该邻居10来了。这可能是高效节能的变化时,在拓扑不需要通过网络传播高度动态的网络。当然,所产生的通信路径可能是次优的。然而,能源效率低,由于路径子最优可以通过精心设计的网络聚合技术来反击。整体而言,我们认为这种方法折衷,增加耐用性和一定规模的能源效率。在数据消息 10显示的位置信息可能会泄露,否则,但这些信息仍然不包含拓扑指标。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。