1、1大学物理 1 第 1 章 第 1 次作业 .11.14.11.15.11.16.21.19.2大学物理 1 第 1 章第 1 次作业1.14 一质点的运动方程为 ,式中 , 分别以 、ktjitr24)( rtm为单位。试求:s(1)它的速度与加速度;(2)它的轨迹方程。 (1) , ;(2) 8vtjk8aj21,4xyz1.15 一质点沿 轴运动,坐标与时间的变化关系为 ,式中x 24tx分别以 、 为单位,试计算:tx,ms(1)在最初 内的位移、平均速度和 末的瞬时速度;2s2(2) 末到 末的平均加速度;s3(3) 末的瞬时加速度。 (1) 最初 内的位移:s20|ttx最初 内的
2、平均速度:2tt4dxvtt22s 末的瞬时速度: 4/vms(2) 末到 末的平均加速度:s13231|80/2ttas(3) 4dvt末的瞬时加速度:s324/ams1.16 一质点沿 轴做加速运动,开始时质点位于 处,初速度为 。x 0x0v(1)当 时,求任意时刻质点的速度及位置;aktc(2)当 时,求任意时刻质点的速度及位置;v(3)当 时,求质点的速度与位置的关系。以上各式中 , 是kx kc常量。解:(1) ,dvat2000tkadvtcv,xvt 306kcxtx(2) , , ,dkvt0td0lnvkt0ktve, ,0ktxe0xtkte 0(1)ktxex(3) dvdvatt即 , ,kx00xvk2200()vkx1.19 一质点沿半径为 的圆周运动,其角坐标 (以弧度 计)1cmrad可用下式表示 324t其中 的单位是秒( )试问:ts(1)在 时,它的法向加速度和切向加速度各是多少?2s3(2)当 等于多少时其总加速度与半径成 角 ? 45解:(1) 利用 , , ,324t2/1dt/24dt得到法向加速度和切向加速度的表达式 ,241nart24tart在 时,法向加速度和切向加速度为:ts,4420.3.nrt ms2128ta(2) 要使总加速度与半径成 角,必须 ,即45nta412rtt解得 ,此时 31/6t67.23trd