1、高教社杯全国大学生数学建模竞赛承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料) ,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从 A/B/C/D 中选择一项填写): A 我们的参赛报名号为(如果赛区设置报
2、名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名) : 日期: 2012 年 7 月 2 日赛区评阅编号(由赛区组委会评阅前进行编号):2008 高教社杯全国大学生数学建模竞赛编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):数码相机的双目定位研究摘要本文通过建立世界坐标系、光心坐标系、图像坐标系、像素坐标系这四个坐标系,对数码相机双目定位进行了研究。对于问题一和
3、问题二,我们建立了矩阵变换模型对于问题三,我们建立对于问题四,关键词:小孔成像、变换矩阵、双目定位问题重述问题背景:数码相机定位在交通监管(电子警察)等方面有广泛的应用。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。标定的一种做法是:在
4、一块平板上画若干个点, 同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利用这两组像点的几何关系就可以得到这两部相机的相对位置。然而,无论在物平面或像平面上我们都无法直接得到没有几何尺寸的“点” 。实际的做法是在物平面上画若干个圆(称为靶标) ,它们的圆心就是几何的点了。而它们的像一般会变形,如图 1 所示,所以必须从靶标上的这些圆的像中把圆心的像精确地找到,标定就可实现。有人设计靶标如下,取 1 个边长为 100mm 的正方形,分别以四个顶点(对应为 A、C 、D 、E)为圆心, 12mm 为半径作圆。以 AC 边上距离 A 点30mm 处的 B 为圆心,12mm 为半径作圆。 需
5、要解决的问题:(1) 建立数学模型和算法以确定靶标上圆的圆心在该相机像平面的像坐标, 这里坐标系原点取在该相机的光学中心,x-y 平面平行于像平面;(2) 对由图 2、图 3 分别给出的靶标及其像,计算靶标上圆的圆心在像平面上的像坐标, 该相机的像距(即光学中心到像平面的距离)是 1577 个像素单位(1 毫米约为 3.78 个像素单位) ,相机分辨率为 1024768;(3) 设计一种方法检验你们的模型,并对方法的精度和稳定性进行讨论;(4) 建立用此靶标给出两部固定相机相对位置的数学模型和方法。模型假设1. 假设数码相机成像系统是小孔成像;2. 假设两台相机的焦距及其他内部参数均相等;3.
6、 相机光轴与图像平面的交点就是图片的几何中心。也就是说,图片的中心即为像平面的原点。符号说明:世界坐标系,其中 , , 分别为坐标系的坐标轴wZYX, wXYwZ:摄像机坐标系,其中 , , 分别为坐标系的坐标轴Ccc:图像坐标系,其中 , 分别为坐标轴yx, xy:像素坐标系,其中 , 分别为坐标轴vuuv:摄像机光心,即摄像机坐标系的原点O: 在 , 坐标系中的坐标0,1Ov:每一个像素在 轴方向上的物理尺寸dxx:每一个像素在 轴方向上的物理尺寸yy:摄相机焦距1O:旋转矩阵Rt:三维平移向量f :焦距模型建立与求解在分析题目之后,我们建立了以下四个坐标系。(1) 世界坐标系( , ,
7、, ):是假想的参考坐标系,可固定于场wOXYwZ景中某物体上,用于描述相机的位置。在题中设其原点 设为靶标中心,Ow垂直于靶标面。Zw(2) 光心坐标系:-以摄像机的光心 点为坐标原点, 轴、 轴分别垂直OcXcY于光轴,摄像机的光轴为 轴,坐标值用 表示。cZcZ,(3) 图像坐标系:坐标原点为照相机光州与图像平面的交点,X 轴、Y 轴分别为平行于光心坐标系的 X 轴,Y 轴,与光轴 XOY 平面与光轴垂直,坐标值用 表示。YX,(4) 像素坐标系:坐标原点在图像平面左上角 U 轴、V 轴分别为平行于图像坐标系的 X 轴、Y 轴,坐标值用 表示,且为离散的整数值。vu摄像机的线性模型:透视
8、投影是最常用的成像模型,可以用针孔成像模型近似表示。其特点是所有来自场景的光线均通过一个投影中心,它对应于透镜的中心。经过投影中心且垂直于图像平面的直线称为投影轴或光轴,如图 4.3 所示。其中 是固1xyz定在摄像机上的直角坐标系,遵循右手法则,其原点位于投影中心, 轴与投影重合并指向场景, 轴和 轴与图像平面的坐标轴 和 平行, 平面CXY1xyCXY与图像平面的距离 为摄像机的焦距 f。在实际摄像机中,图像平面位于投影1o中心后距离为 f 的位置,其投影图像是倒立的,为了避免图像倒立,假定有一个虚拟成像 x y z平面位于投影中心的前面,点 在图像平面上的,cPxyz投影位置(x ,y)
9、可以通过计算点 的视线与虚拟成像平面的交点得到。,cPxyz问题一、问题二:模型的建立:模型的求解:问题三:精确度的检验:模型的建立:由小孔成像可知,直线经小孔成像之后仍然是直线,所以,在标靶上的圆A、B、C,他们的圆心在标靶上是一条直线,那么经过小孔成像之后,三个圆心的像的应该仍然在一条直线上。因此,我们建立了圆心的像的共线性模型。该模型是针对同一条直线上的三个圆心 A、B、C 所对应的像点 A 是否仍然在一条直线上进行验证。我们通过对三个圆心 A、B、C 的像点 进行拟合,可以得到一条拟合直线,然后计算三个圆心 A、B、C 的像点 到这条拟合直线的距离,如果距离非常小,说明拟合程度高。我们
10、有理由相信,圆心A、B、C 的像点仍具有共线性,也就说明模型的精确程度较高。A B C D E 模型的求解:通过问题一和问题二的求解,我们知道了圆心 A、B、C 的坐标分别为( ) , ( ) , ( ) ,经过拟合可得直线 求得圆心 A 的像点 到直线的距离为:求得圆心 A 的像点 到直线的距离为:求得圆心 A 的像点 到直线的距离为:因为 所以模型的精确度较较高。稳定性的检验:模型的建立:由于种种原因,像的轮廓上的点具有很大的不确定性,所以我们建立了选取数量的边界点进行拟合计算,得到相应的椭圆拟合方程,比较每次拟合所得的椭圆系数,如果相对应的所有系数的方差较小,说明模型的稳定性强,反之,模
11、型的稳定性就弱。模型的求解:我们对所得到的边缘点的坐标进行了适当的选取,分别去了80、65、50、35 个坐标进行了计算,得到如下结果。方差为:问题四:模型的建立与求解: 要画图当用两部位置固定的相机进行拍摄定位时,就会存在两个相机得光心坐标系,我们可以将相机分别记为 ,故两个相机的坐标分别为21,C,世界坐标系与相机 的光心坐标系之间转化),(),(2211CCZYXZYX 1C的旋转矩阵为 ,平移矩阵为 ,世界坐标系与相机 的光心坐标系之间转化R1T2的旋转矩阵为 ,平移矩阵为 ,对于空间内的任意点,其在世界坐标系和相22机 中的坐标可以记为 ,因此由上文可得:21,C1,CWP11TPR
12、WC22因此消去 ,可得两个位置固定的相机 之间的相对位置为:W21,C121211 TRPCC即 121211ZYX模型的评价与分析模型的优点:1.变化矩阵模型具有很强的适应性,可以对一般的双目定标问题进行求解。2.稳定性检验过程中充分考虑了图像边界的信息,从整体的角度把握的信息。3.模型的稳定性较好,精确度较高。模型的缺点:1. 本文的模型是建立在小孔成像的基础上的,而实际相机成像是透镜成像,原理图像中心处,透镜畸变会比较大,从而会影响小孔成像,对模型造成一定的误差。参考文献1 姜启源,谢金星,叶俊.数学模型.高等教育出版社,2003 年 8 月。2 周建华,陈建龙,张小向,几何与代数,科学出版社,2009 年 6 月。3 蔡健荣,赵杰文 双目立体视觉系统摄相机标定 江苏大学学报(自然科学版) 第 27 卷 第 1 期:6-9 2006。4 侯建志,施毅等,基于 Matlab 的非线性方程组的求解方法,科技资讯,2008 年 5 月 13 日。附录