1、光学发展简史光学是物理学中最古老的一个基础学科,又是当前科学研究中最活跃的学科之一。随着人类对自然的认识不断深入,光学的发展大致经历了几何光学时期、波动光学时期、量子光学时期、现代光学时期等 5 个时期。目 录1 简介2 萌芽时期3 几何光学时期4 波动光学时期5 量子光学时期6 现代光学时期1 简介光学既是物理学中最古老的一个基础学科,又是当前科学研究中最活跃的前沿阵地,具有强大的生命力和不可估量的前途。光学的发展过程是人类认识客观世界的进程中一个重要的组成部分,是不断揭露矛盾、克服矛盾,从不完全和不确切的认识逐步走向较完善和较确切认识的过光的直线传播程。它的不少规律和理论是直接从生产实践中
2、总结出来的,有相当多的发现来自长期的系统的科学实验。因此,生产实践和科学实验是光学发展的源泉。光学的发展为生产技术提供了许多精密、快速、生动的实验手段和重要的理论依据;而生产技术的发展,又反过来不断向光学提出许多要求解决的新课题,并为进一步深入研究光学准备了物质条件。光学的发展大致可换分为 5 个时期:一、萌芽时期;二、几何光学时期;三、波动光学时期;四、量子光学时期;五、现代光学时期。2 萌芽时期中国古代对光的认识是和生产、生活实践紧密相连的。它起源于火的获得和光源的利用,以光学器具的发明、制造及应用为前提条件。根据籍记载,中国古代对光的认识大多集中在光的直线传播、光的反射、大气光学、成像理
3、论等多个方面。1、对光的直线传播的认识 早在春秋战国时 墨经已记载了小孔成像的实验:“景,光之人,煦若射,下者之人也高;高者之人也下,足蔽下光,故成景于上,首蔽上光,故成景于下”。指出小孔成倒像的根本原因是光的 “煦若射 ”,以“射” 来比喻光线径直向、疾速似箭远及他处的特征动而准确。 宋代,沈括在 梦溪笔谈中描写了他做过的一个实验,在纸窗上中国古代铜镜开一个小孔,使窗外的飞鸢和塔的影子成像于室内的纸屏上,他发现:“若鸢飞空中,其影随鸢而移,或中间为窗所束,则影与鸢遂相违,鸢东则影西,鸢西则影东,又如窗隙中楼塔之影,中间为窗所束,亦皆倒垂”。进一步用物动影移说明因光线的直进“ 为窗所束”而形成
4、倒像。2、对视觉和颜色的认识 对视觉在墨经中已有记载:“目以火见”。已明确表示人眼依赖光照才能看见东西。稍后的吕氏春秋任数篇明确地指出:“ 目之见也借于昭”。礼记 仲尼燕居中也记载: “譬如终夜有求于幽室之中,非烛何见 ?”东汉潜夫论中更进一步明确指出:“夫目之视,非能有光也,必因乎日月火炎而后光存焉” 。以上记载均明确指出人眼能看到东西的条件必须是光照,尤其值得注意的是认为:光不是从眼睛里发出来的,而是从日、月、火焰等光源产生的。这种对视觉的认识是朴素、明确、比较深刻的。颜色问题,在中国古代很少从科学角度加以探索,而着重于文化礼节和应用。早在石器时代的彩陶就已有多种颜色工艺。 诗经里就出现了
5、数十种不同颜色的记载。周代把颜色分为“ 正色”和“ 间色”两类,其中“正色”是指“ 青、赤、黄、白、黑五色”。“ 间色”则由不同的“正色 ”以不同的比例混合而成。战国时期孙子兵法势篇更指出:“色不过五,五色之变不可胜观也”。可见这“正色” 和“ 间色”的说法,与现代光学 中的“三原色”理论很类似,但缺乏实验基础。清初博明对颜色提出”五色相宣之理,以相反而相成。如白之与黑,朱之与绿,黄之与蓝,乃天地间自然之对,待深则俱深,浅则俱浅。相杂而间,色生矣”(西斋偶得三种) 。这里孕育了互补色 的初步概念,虽未形成一定的 颜色理论,但从半经验半思辨的角度看也实在是难能可贵的。3、光的反射和镜的利用 中国
6、古代由于金属冶炼技术的发展,铜镜在公元前 2000 年夏初的齐家文化时期已经出现。后来随着技术的发展,古镜制作技术逐渐提高,应用范围逐扩大,种类也逐渐增多,出现了各种平面镜、凹面镜和凸面镜,甚至还制造出被国外称为魔镜的“ 透光镜”。1956 1957 年河南陕县上村岭 1052 号虢国墓出土过春秋早期的一面阳燧( 凹面镜 ),它直径 7.5 厘米,凹面呈银白色,打磨十分光洁,背面中心还有一高鼻纽以便携带,周围是虎、鸟花纹,图 1 是它的镜背及剖面图。镜的利用为光的反射的研究创造了良好的条件,使中国古代对光的反射现象和成像规律有较早的认识。这方面的记载也较多。关于平面镜反射成像,墨经中记载:“景
7、迎日,说在转” 。说明人像投在迎向太阳的一边,是因为日光经过镜子的反射而转变了方向。这是对光的反射现象的一种客观描写。关于平面镜组合成像,庄子天下篇中记载:“ 鉴以鉴影,而鉴以有影,两鉴相鉴重影无穷” 。生动地描写了光线 在两镜之间彼此往复反射,形成许许多多像的情景。淮南万毕术记载:“取大镜高悬,置水盆于其下,则见四邻矣” 。其原理和现代的潜望镜很类似。对凸面镜成像的规律,在墨经中有所叙述:“鉴团,景一,说在刑之大” 。经说中进一步解释说:“鉴,鉴者近,则所鉴大,景亦大,其远,所鉴小,景亦小,而必正” 。它说明了凸面镜只成一种像,物体总成一种缩小而正立的像,对凸面镜成像规律作了细致描写。关于凹
8、面镜,墨经记载:“鉴洼,景一小而易,一大而正,说在中之外、内” 。说明当时已认识到凹面镜有一个“ 中”( 指焦点和球心之间)。物在“ 中” 之外,得到比物体小而倒立的像,物在“中”之内,得到的海市蜃楼是比物体大而正立的像,这种观察是细致而周密的。淮南子天文训记载:“ 阳燧见日则燃而为火 。这说明中国 古代已认识到凹面镜对光线有聚作用。梦溪笔谈中也有记载:“阳燧,面洼,以一指迫而照之则正,渐远则无所见,过此遂倒” 。此处不仅述了凹面镜成像的规律,还提出了测凹面镜的焦距的一种粗略方法,发现成正像和倒像之间有个分界点。 梦溪笔谈又说:“阳燧面洼,向日照之,光皆聚向内,离镜一、二寸,光聚为一点,大如麻
9、菽,着物则火发,此则腰鼓最细处也”。作者( 沈括)把聚光点形容如芝麻和豆粒那么之小,又把它称作“碍 ”,用“腰鼓最细处” 形容地比喻光束的会聚,十分贴切。4、对大气光学现象的探讨 大气光学现象是中国古代光学最有成效的领域之一,早在周代由于占卜的需要,已建立了官方的观测机构,虽然他们的工作蒙上了一层神秘的色彩,但是对晕、虹、海市蜃楼、北极光等大气光学现象的观测与记载是长期、系统而又深入细致的,世所罕见。 周礼中记载有“十煇” ,指的是括“霾” 和“ 虹”等在内的十种大气光学现象。到唐代对它的认识更加细致、深入。晋书天文志 中明确指出:“ 日旁有气,圆而周布,内赤外青,名日晕”。此处不仅为晕下了定
10、义,而且把晕按其形态冠以各种形象的名称,如将太阳上的一小段晕弧叫做“冠” ;太阳左右侧内向的晕弧叫做 “抱”等等。另外在魏书天象志 中对晕也有记载。除此以外,在宋朝以后的许多地方志中也记载有大气光象,还出现了关于大气光象的专著及图谱,其中天象灾瑞图解一直流传至今。殷商时期,就出现了有关虹的象形文字,对虹的形状和出现的季节、方位不少书有所记载,如礼记月令 指出:“季春之月虹始见”,“ 孟冬之月虹藏不见” 。东汉蔡邕(132192)在明堂月令中写道:“虹见有青赤之色,常依阴云而昼见于日冲。无云不见,太阳亦不见,见辄与日相互,率以日西,见于东方?这些记载虽然是很粗浅的,经验性的,但它却是关于虹的确凿
11、记录。魏、晋以后,对虹的本质和它的成因逐渐有所探讨,南朝江淹说自己对虹“ 迫而察之”,断定是因为“雨日阴阳之气” 而成。唐初已认识到虹的成因,” 若云薄漏日,日照雨滴则虹生”,明确指出 “日照”和“ 雨滴”是产生虹的条件。后来,张志和在玄真子 涛之灵中明确指出: “背日喷乎水,成虹霓之状 。第一次用实验方法得出人工造虹,到南宋时,蔡在毛诗名物解中,对这一种更有发展:“今以水喷日,自侧视之则晕为虹” 。不仅重复了玄真了 中的实验方法,而且更进一步指出了观察者所在的位置。在国外对虹的成因作出解释的是在 13 世纪,因此我们对虹成因的正确描述比 西方早约 600年。关于海市蜃楼,中国古代也早有记载,
12、如史记天官书:“ 蜃气象楼台”。汉书天文志 :“海旁蜃气楼台” 。晋书 天文志:“凡海旁蜃气象楼台,广野气成宫阙,北夷之气如牛羊群畜穹庐,南夷之气类舟船幡旗”。这是对海市蜃楼的如实描写,但当时并不了解其成因和机理。到宋朝苏轼对它才有较正确的认识,他在登州海市中说:“东方云海空复空,群山出没月明中,荡摇浮进生万象,岂有贝阙藏珠宫”。此处明确地表示海市蜃楼都是幻景,蜃气并不能成宫殿的思想。到明、清之际,陈霆、方以智等人对海市蜃楼作了进一步探讨,陈霆认为海市蜃楼的成因是:“为阳焰和地气蒸郁,偶尔变幻。方以智认为“海市或以为蜃气,“非也” 。张瑶星认为蓬莱岛上的蜃景是附近庙岛群岛所成的幻景,后来揭暄和
13、游艺画了一幅如图 2 所示的“ 山城海市蜃气楼台图” ,图上右方是左方楼台的倒影。文中记载了登州(即蓬菜)海市,并说:“昔曾见海市中城楼,外植一管,乃本府东关所植者。因语以湿气为阳蒸出水上,竖则对映,横则反映,气盛则明,气微则隐,气移则物形渐改耳,在山为山城,在海为海市,言蜃气,非也。”这一气“气映”说是对当时海市蜃楼知识的珍贵总结。极光是一种瞬息变幻、绚丽多彩的大气光象,中国处在北半球,故观察到的只能是北极光。早在二千年前,中国就对北极光人加以观察,并有所记载,竹书纪年中记载:“周昭王末年,夜清,五色光贯紫微。其年,王南巡不返” 。此文虽如实地记录了北极光出现的时间、方位和颜色,但把王南巡不
14、返(卒于江上) 联系起来,说明当时对北极光还没有正确的认识。对北极光的形状、颜色不少书都有详细的描述,并绘有彩色极光图,这些都是研究北极光的极好史料。5、关于成影现象的认识 日常生活中,在光线照射下,影随时随处可以见到,它引起人们的注意,并探究其形成的规律。立竿见影是中国古代最早被注意的问题,后来用此方法测影定向,并应用于确定墓穴和建筑物的方位上。这套方法在周代已发展很精密,据考工记记载,当时有“土方氏 ”使用圭表,“典瑞氏” 管理土圭,“ 匠人”则使用土圭辨定方位进行建筑,并指出在测表影之先,要使地面保持水平,使表竿保持垂直,这说明当时已认识到投影的长度和光源位置有关,而且也和物体的斜度有关
15、。墨经中对成影的讨论更加深入,通过实验明确指出:表秆在地面上投影的粗细长短,是随木离光源的远近、木的倾斜度以及光源的大小变化而变化的规律。中国古代对光的认识除以上所述外,还有其他一些方面,如折射现象;天然晶体的色散;明清时期,光学从西方传入后,还有了光学仪器的制作等等,但这些认识是零散的,定性的,绝大多数都只停留在对光学现象的描写和记载上。值得提出的是宋末元初的赵友钦(13 世纪中叶至 14 世纪初叶 ),在革象新书的“小罅光景”中,描写了一个大型光学实验,在地面下挖了两个圆阱,圆阱上可加放中心开有大小、形状不同孔的圆板盖。通过它可进行只有一个条件不同的对比实验,对小孔(大小和形状 )、光源(
16、形状和强度)、像( 形状和亮度) 、物距、像距之间的关系进行研究。将两块圆板上各插 1000 多支蜡烛,放在阱底或桌面上作为该实验的光源。通过实验确认了光直线进行的性质,定性地显示了像的明亮程度与光源强度之间的关系,并涉及光的照度和成像理论。他所采用的大型实验方法很有特色,是中国历史上记载的规模最大的实验。还有值得提出的元代郭守敬(12311316) 曾巧妙地利用针孔取像器“景 (影) 符” 解决了历来圭表读数不准的问题。一般圭表因太阳上下边沿投影在影端生成半影,因此读数比较模糊。正如元史卷 48所说:“表短,所谓分、秒、太、少、半之数,末易分别表长,影虚而谈,难得实影”。郭守敬在建河南登封观
17、星台时除用水平沟使圭面保持水平外,在表上加一横梁,在圭上加一可移动的“景符 ”)即在约宽 2 寸和斜铜时上扎一针孔,以“楮( 即斜) 竿” 调其倾度以迎晶光。这样,太阳针孔光电效应像“仅如米许,隐然见横梁于其中” ,细如发丝,误差可达 0.1 毫米。郭守敬的观测结果之精确令拉普拉斯为惊之叹。郭守敬的改进是在实际测量、反复试验中创造,并且带有定量意义,可惜这种创造只是凤毛麟角,很少有人继承下来。西方光学萌芽及发展从墨翟开始后的两千多年的漫长岁月构成了光学发展的萌芽时期,在此期间光学发展比较缓慢。罗马帝国的灭亡( 公元 475 年)大体上标志着黑暗时代的开始,在此之后,欧洲在很长一段时间里科学发展
18、缓慢,光学亦是如此。除了对光的直线传播、反射和折射等现象的观察和实验外,在生产和社会需要的推动下,在光的反射和透镜的应用方面,逐渐有了些成果。克莱门德(Clemomedes)和托勒密(C.Ptolemy,90-168)研究了光的折射现象,最先测定了光通过两证介质免时代入射角和折射角。罗马哲学家塞涅卡(Seneca,前3-65)指出充满水的玻璃泡具有强大功能。从阿拉伯的巴斯拉来到埃及的学者阿尔哈雷(Alhazen,965-1038)反对欧几里德和托勒密关于眼镜发出光线才能看到物体的学说,认为光线来自所观察的物体,并且光是以球面形式从光源发出的;反射和入射线共面且入射面垂直与界面,他研究了球面镜与
19、抛物面镜,并详细描述了人眼的构造;她首先发明了凸透镜,并对凸透镜进行了实验研究,所得的结果接近于近代关于凸透镜的理论。培根(R.Bacon,1214-1294)提出透镜校正视力和采用透镜组构成望远镜的可能性,并描述了透镜焦点的位置。阿玛蒂(Armati)发明了眼镜。波特(G.B.D.Porta,1535-1615 )研究了成像暗箱,并在 1589 年的论文自然的魔法中讨论了复合面镜以及凸透镜和凸透镜组的组合。综上所述,到 15 世纪末和 16 世纪初,凹面镜、凸面镜、眼镜、透镜以及暗箱和幻灯等光学元件已相继出现。3 几何光学时期这一时期可以称为光学发展史上的转折点。在这个时期建立了光的反射定律
20、和折射定律,奠定了几何光学的基础。同时为了提高人眼的观察能力,人们发明了光学仪器,第一架望远镜的诞生促进了天文学和航海事业的发展,显微镜的发明给生物学的研究提供了强有力的工具。荷兰的李普塞在 1608 年发明了第一架望远镜。开普勒于 1611 年发表了他的著作折光学,提出照度定律,还设计了几种新型的望远镜,他还发现当光以小角度入射到界面时,入射角和折射角近似地成正比关系。折射定律的精确公式则是斯涅耳和笛卡儿提出的。1621 年斯涅耳在他的一篇文章中指出,入射角的余割和折射角的余割之比是常数,而笛卡儿约在 1630 年在折光学中给出了用正弦函数表述的折射定律。接着费马在1657 年首先指出光在介
21、质中传播时所走路程取极值的原理,并根据这个原理推出光的反射定律和折射定律。综上所述,到十七世纪中叶,基本上已经奠定了几何光学的基础。关于光的本性的概念,是以光的直线传播观念为基础的,但从十七世纪开始,就发现有与光的直线传播不完全符合的事实。意大利人格里马第首先观察到光的衍射现象,接着,胡克也观察到衍射现象,并且和波意耳独立地研究了薄膜所产生的彩色干涉条纹,这些都是光的波动理论的萌芽。十七世纪下半叶,牛顿和惠更斯等把光的研究引向进一步岁展的道路。1672 年牛顿完成了著名的三棱镜色散试验,并发现了牛顿圈(但最早发现牛顿圈的却是胡克)。在发现这些现象的同时,牛顿于公元 1704 年出版的光学,提出
22、了光是微粒流的理论,他认为这些微粒从光源飞出来。在真空或均匀物质内由于惯性而作匀速直线运动,并以此观点解释光的反射和折射定律。然而在解释牛顿圈时,却遇到了困难。同时,这种微粒流的假设也难以说明光在绕过障碍物之后所发生的衍射现象。 惠更斯反对光的微粒说,1678年他在论光一书中从声和光的某些现象的相似性出发,认为光是在“以太” 中传播的波所谓“ 以太”则是一种假想的弹性媒质,充满于整个宇宙 空间,光的传播取决于“以太”的弹性和密度运用他的波动理论中的次波原理,惠更斯不仅成功地解释了反射和折射定律,还解释了方解石的双折射现象但惠更斯没有把波动过程的特性给予足够的说明,他没有指出光现象的周期性,他没
23、有提到波长的概念他的次波包络面成为新的波面的理论,没有考虑到它们是由波动按一定的位相叠加造成的归根到底仍旧摆脱不了几何光学的观念,因此不能由此说明光的干涉和衍射等有关光的波动本性的现象与此相反,坚持微粒说的牛顿却从他发现的牛顿圈的现象中确定光是周期性的综上所述,这一时期中,在以牛顿为代表的微粒说占统治地位的同时,由于相继发现了干涉、衍射和偏振等光的被动现象,以惠更斯为代表的波动说也初步提出来了,因而这个时期也可以说是几何光学向波动光学过渡的时期,是人们对光的认识逐步深化的时期4 波动光学时期19 世纪初,波动光学初步形成,其中 托马斯杨圆满地解释了“薄膜颜色”和双狭缝干涉现象。菲涅耳于 181
24、8 年以杨氏干涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的 惠更斯-菲涅耳原理,用它可圆满地解释 光的干涉和衍射现象,也能解释光的直线传播。在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太 )中传播的横波。为说明光在各不同 媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。1846 年,法拉第发现了光的振动面在磁场中发生旋转;1856 年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他
25、们的发现表明光学现象与磁学、电学现象间有一定的内在关系。 1860 年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于光学显微镜空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在 1888 年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了 1896 年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。对于像炽热的黑体的辐射
26、中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887 年迈克耳逊用干涉仪测“以太风” ,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。光的电磁论在整个物理学的发展中起着很重要的作用,它指出光恶化电磁现象的一致性,并且证明了各种自然现象之间存在这相互联系这一辩证唯物论的基本原理,使人们在认识光的本性方面向前迈进了一大步。在此期间,人们还用多种实验方法对光速进行了多次测定。1849 年斐索(A.H.L.Fizeau,1819-189
27、6)运用了旋转齿轮的方法及 1862 年傅科(J.L.Foucault,1819-1868 )使用旋转镜法测定了光在各种不同介质中的传播速度。5 量子光学时期19 世纪末到 20 世纪初,光学的研究深入到光的发生、光和物质相互作用的围观机制中。光的电磁理论主要困难是不能解释光和物质相互作用的某些现象,例如,炽热黑体辐射中能量按波长分布的问题,特别是 1887 年赫兹发现的光电效应。1900 年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。量子论不仅很自然地解释了黑
28、体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。1905 年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。 1905 年 9 月,德国物理学年鉴发表了爱因斯坦的关于运动媒质的电动力学一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的经典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物
29、体的光学现象。这样,在 20 世纪初,一方面从光的干涉、衍射、偏振以及运动物体的 光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性 微粒性。光和一切微观粒子斗具有波粒二象性,这个认识促进了原子核和粒子研究的发展,也推动人们去进一步探索光和物质的本质,包括实物和场的本质问题。为了彻底认清光的本性,还要不断探索,不断前进。6 现代光学时期从 20 世纪中叶起,随着新技术的出现,新的理论也不断发展,已逐步形成了许多新的分支学科或边渊学科,光学的应用十分广泛。几何光学本来就是为设计各种光学仪器而发展起来的专门学科,随着科学技术的进步,物理光学也
30、越来越显示出它的威力,例如光的干涉目前仍是精密测量中无可替代的手段,衍射光栅则是重要的分光仪器,光谱在人类认识物质的微观结构(如原子结构 、分子结构等) 方面曾起了关键性的作用,人们把 数学、信息论与光的衍射结合起来,发展起一门新的学科 傅里叶光学,把它应用到信息处理、像质评价、光学计算等技术中去。特别是激光的发明,可以说是光学发展史上的一个革命性的里程碑,由于激光具有强度大、单色性好、方向性强等一系列独特的性能,自从它问世以来,很快被运用到材料加工、精密测量、通讯、测距、全息检测、医疗、农业等极为广泛的技术领域,取得了优异的成绩。此外,激光还为同位素分离、储化,信息处理、受控核聚变、以及军事
31、上的应用,展现了光辉的前景。20 世纪中叶,特别是激光问世以后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于 1916 年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960 年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962 年产生了半导体激光器;1963 年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向
32、性,所以自 1958 年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到 1873 年阿贝提出的显微镜成像理论,和 1906 年波特为之完成的实验验证;1935 年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953 年 诺贝尔物理学奖;1948 年伽柏提出的现代全息照相术的前身 波阵面再现原理,为此,伽柏获得了 1971 年诺贝尔物理学奖。自 20 世纪 50 年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相
33、关运算等概念,更新了经典成像光学,形成了所谓“ 博里叶光学”。再加上由于激光所提供的相干光 和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。总之,现代光学和其他学科和技术的结合,在人们的生产和生活中发挥这日益重大的作用和影响,正在成为人们认识自然、改造自然以及提高劳动生产率的越来越强有力的武器。