1、目 录第一章 绪论 . 1 1.1 设计背景及意义.1 1.2 国内外研究现状.1 1.2.1 国内研究现状 .1 1.2.2 国外烟气脱硫发展状况 .2 1.3 课程设计任务及采用技术.3 1.3.1 设计任务与目的.3 1.3.2 脱硫技术简介.3 第二章 脱硫工艺. 4 2.1 湿式石灰石石膏脱硫工艺介绍.4 2.1.1 烟气脱硫原理.4 2.1.2 空塔喷淋脱硫工艺.6 2.1.3 脱硫设备说明.62.2 物料衡算.6 2.2.1 二氧化硫产生量.6 2.2.2 脱硫量.10 2.2.3 吸收塔的硫平衡.10 2.2.4 系统总钙平衡. .10 2.2.5 副产物和脱硫渣量产生量.10
2、2.2.6 系统的水平衡.11第三章 工程内容. 11 3.1 主要内容.11 3.1.1 烟气系统.11 3.1.1.1 界面设计.11 3.1.1.2 实际氧化空气的计算 .113.1.1.3 增压风机的设计.133.1.2 SO2 吸收系统(喷淋吸收空塔主要工艺设计参数).13 3.1.2.1 烟气流速.133.1.2.2 喷淋塔吸收区高度(h 1).133.1.2.3 喷淋塔除雾区高度(h 2).153.1.2.4 喷淋塔浆液池高度设计(h 3).173.1.2.5 喷淋塔烟气进口高度设计(h 4).193.1.2.6 喷淋塔的直径设计.193.1.2.7 喷淋层喷嘴的设计.203.1
3、.2.8 喷淋塔的壁厚设计.213.1.2.9 氧化风机和氧化吸收池搅拌机设计.223.1.2.10人孔及手孔的设计.233.1.2.11吸收塔喷淋系统的设计.233.1.3 管道的保温及防腐.243.1.4 脱硫液循环系统.253.1.5 吸收剂制备及供给系统.253.1.6 石膏脱水系统.263.1.7 废水处理系统.273.1.8 工艺水系统.283.1.9 电气系统.293.1.10 监测系统.29第四章 效益评估.30 4.1 运行费用估算.30 4.1.1 电费.30 4.1.2 水费.304.1.3 脱硫剂费用.31 4.1.4 人工费.31 4.1.5 运行费用.31 4.2
4、环境效益及社会效益.31 参考文献 .35 结 束 语 . 36 附 录 第一章 绪论1.1 设计背景及意义我国空气污染问题的形成与二氧化硫排放总量居高不下密切相关。中国排放二氧化硫的 90%、氮氧化物的 70%来自燃煤,而其中的 50%左右来自燃煤电厂。目前中国一年的 SO2 的年排放量大约为 2000 多万吨,如果不采用控制措施,2012 年,SO 2 的排放量将超过 3300 万吨。因此削减火电厂的 SO2 排放是控制 SO2 排放总量的重点。为此国家制定了一系列的环保措施,颁布了新的大气污染防治法 ,并划定了 SO2 污染控制区及酸雨控制区。根据国家新的产业政策,我国现阶段新上燃煤电厂
5、必须同步安装脱硫设施,已经建成的机组也要逐步进行脱硫技术改造。因此,近几年正是我国燃煤电厂烟气脱硫事业发展的黄金时期。 世界燃煤电厂控制 SO2 排放最有效、应用最广的技术为燃烧后脱硫即烟气脱硫(Flue gas desulfurization,缩写 FGD)。该法可达到很高的脱硫率,技术比较成熟,是目前世界上已经完成大规模商业化应用的主要脱硫技术之一。烟气脱硫技术可分为湿法、半干法和干法三类工艺。湿法脱硫技术以其脱硫效率高,运行稳定可靠及没有二次污染独占鳌头。在发达国家,90%以上的烟气脱硫采用湿法脱硫技术,湿法脱硫技术已成为我国燃煤电厂烟气脱硫的首选工艺。湿式石灰石石膏法烟气脱硫工艺是目前
6、世界上燃煤电厂应用最广泛、技术最成熟的湿法脱硫技术。该技术采用石灰石(CaCO 3)浆液作洗涤剂,在反应塔(吸收塔)中对烟气进行洗涤,从而除去烟气中的 SO2。 以前我国燃煤电厂烟气脱硫项目的引进大多对硬件比较重视,而对软件的重视程度不够,不少引进项目大多停留在购买设备上,但现在越来越注重烟气脱硫技术的国产化。而国产化的关键在于掌握烟气脱硫的设计技术,只有实现烟气脱硫设计国产化,才能按市场规则选用更多质量优良、价格合理的脱硫设备,才有资格、有能力对脱硫工程实行总承包,承担全部技术责任,推动烟气脱硫设计国产化的进程。因此我们在引进设计和制造技术,在消化吸收和创新方面还需要做大量的工作。1.2 国
7、内外研究现状 1.2.1 国内研究现状 5我国政府十分重视二氧化硫污染治理及技术研究开发工作,自 70 年代开始,曾先后进行了亚纳循环法、活性炭吸附法、石灰石法等半工业性试验或现场中间试验。80 年代,在四川白马电厂建立了处理烟气量为 70000m3/h(标态)的旋转喷雾干燥法脱硫工业试验装置,并于 1991 年正式移交生产运行。 “八五”期间,不同工艺的脱硫示范项目相继开展,如:山东黄岛发电厂一台 210MW 旋转喷雾干燥法烟气脱硫、山西太原第一热电厂高速水平流简易石灰石湿法烟气脱硫、南京下关电厂 2 台 125MW 机组的炉内喷钙尾部烟气增湿活化脱硫、四川成都热电厂一台 200MW 电子束
8、脱硫、深圳西部发电厂 300MW 机组海水脱硫等。90 年代,大型火电机组脱硫工作有了进一步发展,如国家电力公司在利用德国政府贷款引进具有 90 年代国际先进水平的德国斯坦米勒石灰石湿法脱硫技术,对北京第一热电厂、浙江半山发电厂和重庆发电厂进行烟气脱硫技术改造,以及华能重庆珞璜发电厂 4 台 360MW 引进日本三菱公司的石灰石湿法烟气脱硫商业装置等。现今我国已拥有大型火电厂烟气脱硫自主知识产权的技术,并经过 30 万千瓦以上机组配套脱硫工程商业化运行的检验。脱硫设备国产化水平大大提高。从设备采购费用看,脱硫设备、材料的国产化率已可以达到 90%以上,部分工程达到 95%以上。脱硫设施造价及运
9、行成本大幅度降低,新建 30 万千瓦机组的单位千瓦烟气脱硫价格从保障质量的角度看可降到平均 200 元人民币左右。在我国燃煤电厂脱硫市场中,湿法脱硫工艺所占的份额高达 75%左右,且其中主要是采用传统的石灰/石灰石石膏湿法脱硫工艺。 1.2.2 国外烟气脱硫发展状况 近年来,世界各发达国家在烟气脱硫方面均取得了很大的进展,美国、日本和德国是世界上 FGD 技术开发和大规模应用的国家,在火电厂 FGD 领域处于领先地位。日本是世界上控制 SO2 最有成效的国家,也是最早实行大规模FGD 的国家。截至 1990 年,其装置达 1900 多套,总装机容量达 0.50.6 亿 kW,所用技术以湿式石灰
10、石石膏法为主,占 75%以上。日本湿式石灰石石膏法大多回收脱硫石膏,以弥补国内石膏资源的不足,年利用脱硫 250 万吨以上。近年来由于燃料结构的改变,如进口原油中含硫量的减少,液化天然气的增加,原子能发电、太阳能等无污染能源的发展,故烟气脱硫设施有减少的趋势。美国自620 世纪 50 年代开始研究电站烟气脱硫技术,到 1988 年美国电站己运行的烟气脱硫(FGD)控制容量 66000MW,占燃煤电站总容量的 20%以上,1990 年底FGD 控制容量己达 71782MW,其 FGD 运行系统数量为 159 套。德国电厂为了达到国家限定的排放标准,主要采用脱硫效率高的湿法脱硫工艺。1.3 课程设
11、计任务及采用技术1.3.1 设计任务及目的任务:完成烟气脱硫工艺系统的设计。烟气整体情况:烟气量 80 万/h;含硫量:1200mg/h;效率95%目的:通过该设计,使学生能够综合运用课堂上学过的理论知识和专业知识。以巩固和深化课程内容;熟悉使用规范、设计手册和查阅参考资料,培养学生分析问题、解决问题和独立工作的能力;进一步提高学生计算、绘图和编写说明书的基本技能。1.3.2 脱硫工艺采用的技术该工艺采用的是湿式石灰石石膏脱硫法。锅炉烟气经电除尘器除尘后,通过增压风机、喷淋增湿降温后进入吸收塔。在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。循环浆液则通过喷浆层内设置的喷嘴喷射到吸
12、收塔中,以便脱除 SO2、SO 3、HCL 和HF,与此同时在 “强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO 42H2O) ,并消耗作为吸收剂的石灰石。循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。每个泵通常与其各自的喷淋层相连接,即通常采用单元制。在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。脱水系统主要包括石膏水力旋流器(作为一级脱水设备) 、浆液分配器和真空皮带脱水机。经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。同时按特定程序不时地用工艺水对
13、除雾器进行冲洗。进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。在吸收塔出口,烟气一般被冷却到 4655左右,且为水蒸气所饱和。通7过 GGH 将烟气加热到 80以上,以提高烟气的抬升高度和扩散能力。第二章 脱硫工艺2.1 湿式石灰石石膏脱硫工艺介绍2.1.1 烟气脱硫原理吸收液通过喷嘴雾化喷入吸收塔,分散成细小的液滴并覆盖吸收塔的整个断面。这些液滴与塔内烟气逆流接触,发生传质与吸收反应,烟气中的SO2、SO 3 及 HCl 、HF 被吸收。SO 2 吸收产物的氧化和中和反应在吸收塔底部的氧化区完成并最终形成石膏。为了维持吸收液恒定的 pH 值并减少石灰
14、石耗量,石灰石被连续加入吸收塔,同时吸收塔内的吸收剂浆液被搅拌机、氧化空气和吸收塔循环泵不停地搅动,以加快石灰石在浆液中的均布和溶解。强制氧化系统的化学过程描述如下:(1)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2H 2OH 2SO3(溶解)H2SO3H HSO 3 (电离)吸收反应的机理:吸收反应是传质和吸收的的过程,水吸收 SO2 属于中等溶解度的气体组份的吸收,根据双膜理论,传质速率受气相传质阻力和液相传质阻力的控制,吸收速率吸收推动力/吸收系数(传质阻力为吸收系数的倒数) 。 强化吸收反应的措施:a)提高 SO2 在气相中的分压力(浓
15、度) ,提高气相传质动力。b)采用逆流传质,增加吸收区平均传质动力。c)增加气相与液相的流速,高的 Re 数改变了气膜和液膜的界面,从而引起强烈的传质。d)强化氧化,加快已溶解 SO2 的电离和氧化,当亚硫酸被氧化以后,它的浓度就会降低,会促进了 SO2 的吸收。e)提高 PH 值,减少电离的逆向过程,增加液相吸收推动力。8f)在总的吸收系数一定的情况下,增加气液接触面积,延长接触时间,如:增大液气比,减小液滴粒径,调整喷淋层间距等。g)保持均匀的流场分布和喷淋密度,提高气液接触的有效性。(2)氧化反应一部分 HSO3 在吸收塔喷淋区被烟气中的氧所氧化,其它的 HSO3 在反应池中被氧化空气完
16、全氧化,反应如下:HSO3 1/2O 2HSO 4HSO4 H SO 42氧化反应的机理:氧化反应的机理基本同吸收反应,不同的是氧化反应是液相连续,气相离散。水吸收 O2 属于难溶解度的气体组份的吸收,根据双膜理论,传质速率受液膜传质阻力的控制。强化氧化反应的措施:a)降低 pH 值,增加氧气的溶解度b)增加氧化空气的过量系数,增加氧浓度c)改善氧气的分布均匀性,减小气泡平均粒径,增加气液接触面积。(3)中和反应吸收剂浆液被引入吸收塔内中和氢离子,使吸收液保持一定的 pH 值。中和后的浆液在吸收塔内再循环。中和反应如下:Ca2 CO 32 2H SO 42 H 2OCaSO 42H2OCO 2
17、2H CO 32 H 2OCO 2中和反应的机理:中和反应伴随着石灰石的溶解和中和反应及结晶,由于石灰石较为难溶,因此本环节的关键是,如何增加石灰石的溶解度,反应生成的石膏如何尽快结晶,以降低石膏过饱和度。中和反应本身并不困难。强化中和反应的措施:a)提高石灰石的活性,选用纯度高的石灰石,减少杂质。b)细化石灰石粒径,提高溶解速率。c)降低 PH 值,增加石灰石溶解度,提高石灰石的利用率。9d)增加石灰石在浆池中的停留时间。e)增加石膏浆液的固体浓度,增加结晶附着面,控制石膏的相对饱和度。f)提高氧气在浆液中的溶解度,排挤溶解在液相中的 CO2,强化中和反应。2.1.2 空塔喷淋脱硫工艺烟气通
18、过电除尘器后进入吸收塔,在吸收塔内烟气向上运动且被吸收液滴以逆流方式所洗涤。喷嘴为无堵塞螺旋喷嘴,吸收液通过喷雾液滴可使气体和液体得以充分接触,脱硫后的净烟气进入折流式除雾器,去除烟气中通过喷淋层夹带的水分。石灰石石膏喷淋空塔具有以下优点:(1) 石灰石膏法烟气脱硫工艺技术成熟,操作成熟,操作成熟,管理成型。(2) 脱硫效率高达 95%以上,对煤种适用性:无限制 ,可用于高中低含硫煤种,是目前最高脱硫效率的方法。(3) 吸收剂:石灰石或石灰, 脱硫剂来源广,价格低廉。(4) 脱硫剂钙硫比 Ca/S:1.03,为脱硫剂最大利用率、最小消耗率的方法。(5) 脱硫产物为石膏 (二水硫酸钙) ,石膏品
19、质:90%左右纯度,可作建材使用,也易于处理综合利用。(6) 水耗及废水量与烟气与工艺水等参数有关,工艺中的废水经处理后可重复利用。(7) 机组适用性强,无限制,尤其适用大机组。利用率大于 95%。(8) 占地面积:取决于现场条件。电耗:1.2-1.6% ,为较大的一种。2.1.3 脱硫设备说明脱硫设备的工艺流程图和平面布置图见附图 1 和附图 2。整套设备由六大部分组成:(1)烟气系统;(2)SO 2 吸收系统;(3)吸收剂制备及供给系统;(4)石膏脱水系统;(5)工艺水系统;(6)电气系统;(7)监测系统。(1)烟气系统本工程的 FGD 不设 GGH,烟气从锅炉引风机后的烟道上引出,经过喷
20、淋10增湿降温进入吸收塔。在吸收塔内脱硫净化,经除雾器除去水雾,送入锅炉引风机后的总烟道,经然后烟囱排入大气。在烟道上设一段旁路烟道,并设置旁路挡板门,当锅炉启动、进入 FGD 的烟气超温和 FGD 装置故障停运时,烟气由旁路挡板经烟囱排放。烟气系统主要包括 FGD 进出口烟道,进出口挡板门,旁路挡板门以及与挡板门配套的电动执行机构。(2)SO 2 吸收系统锅炉烟气通过静电除尘器,除去烟尘,然后进入引风机,在引风机出口进入 FGD 吸收塔,烟气从底部进入喷雾吸收塔,与喷淋液逆流接触。烟气中的SO2 经过 FGD 吸收塔的吸收,其出口烟气二氧化硫脱除率在 95%以上。净烟气在塔体上段通过高效组合
21、式除雾装置(有二级除雾设施,机械去除雾滴效率在99.8%以上)除去烟气中的雾滴,净化后的烟气经塔后烟道进入烟囱排放。吸收塔采用耐高温 Q235-B 钢制作。脱硫液在吸收塔内与烟气充分接触、反应后,经塔体底部排灰水沟回流入混合池,流入混合池的脱硫液与石灰石浆液进行再生反应。在本脱硫设备中,吸收塔为逆流式喷淋空塔,喷淋层为三层布置,在满足吸收 SO2 所需的比表面积的同时,同时满足不同锅炉负荷和含硫量的要求。同时把喷淋造成的压力损失减少到最小。每个喷淋层都装有多个雾化喷嘴,交叉布置,覆盖率可达 200%-300%。喷嘴采用螺旋喷嘴,材质为防腐耐磨陶瓷喷嘴。设计进水压力 0.05-0.1Mpa。吸收
22、塔内的除雾装置由带加强的阻燃聚丙烯制作,主要由除雾板、反清洗装置组成,经除雾器后的烟气含水量在 75mg/m3 以下。(3)吸收剂制备及供给系统由汽车运来的石灰石卸至石灰石浆液制备区域的地斗,通过斗提机送入石灰石贮仓(贮仓的容量按需要的石灰石耗量设计) ,石灰石贮仓出口由皮带称重给料机送入石灰石湿式磨机,研磨后的石灰石进入磨机浆液循环箱,经磨机浆液循环泵送入石灰石旋流器,合格的石灰石浆液自旋流器溢流口流入石灰石浆液箱,不合格的从旋流器底流再送入磨机入口再次研磨。系统设置一个石灰石浆液箱,每塔设置 2 台石灰石浆液供浆泵。吸收塔配有一条石灰石浆液输送管,石灰石浆液通过管道输送到吸收塔。每条输送管上