1、DICP,SAPO-34分子筛合成实例,解决的基础问题Si 原子是如何进入分子筛骨架的如何控制 Si 原子在分子筛骨架中的分布,分子筛的合成与制备,结构&组成,催化性能,Al(1Si),Al(1Si),Al(3Si),Al(4Si),Higher Si/Al,Stronger acidicsites,DICP,XRD spectra of as-synthesized samples,DICP,Crystallization curve of SAPO-34,DICP,IR results,DICP,Assignment of the IR bands in framework vibrati
2、on region of the as-synthesized samples,DICP,Influence of crystallization on the composition of solid samples,Relative content curve of template in the as-synthesized samples,DICP,31P NMR of the gel samples in the first steps of the crystallization process,The stirred mixing gel of the raw sources (
3、silica sol, pseudoboehmite, orthophosphoric acid and water)The stirred mixing gel of a. and template (TEA).The b. gel after aging (the initial state of the crystallization).,DICP,27AlMAS(a), 31P MAS(b) and 29Si CP/MAS(c) NMR spectra of as-synthesized samples in the earlier stage of crystallization,a
4、,b,c,DICP,27Al MAS NMR spectra of calcined and dehydrated samples in the earlier stage of crystallization,DICP,Changes of the Al(IV), P(IV) and Si(IV) relative content (a) and relative proportion (b) of the as-synthesized samples with crystallization time,(a) relative content,(b) relative proportion
5、,DICP,晶粒以Si(4Al) 方式生长(2.5h),初始凝胶(0h),重排 聚合,形成晶核(0.5h),晶粒生长,80%Si 直接进入骨架,Si(nAl) n=0-4 结构形成(26h),Si 取代P2Si 取代 Al+P,Si 直接参与,相对结晶度80%,SAPO-34晶化机理模型,DICP,4.分子筛的基本性质,基本特点多孔晶体,规整孔道结构大比表面积结构多样性组成多样性高热稳定性,水热稳定性基本性质离子交换性质吸附性质固体酸碱性质,DICP,DICP,DICP,DICP,DICP,DICP,DICP,5.分子筛的表征,XRD: 晶相,晶胞参数,晶体结构电子显微镜:晶貌,组成吸附脱附:
6、比表面积,孔径,孔容、 酸碱性等红外光谱(IR):OH;酸碱性质;骨架;表面物种NMR:结构微环境分析;酸碱性质热重差热:热稳定性,酸碱性,吸附(脱附)性质,积碳分析,DICP,注意:XRD图随组成也有变化,DICP,去除模板剂前后XRD图有变化,DICP,XRD测定结晶度,一般测定8个主峰即可也可用于测定杂晶相对结晶度,DICP,XRD测定Si/Al比,晶粒必须大于0.3微米组成变化引起晶胞参数变化,XRD呈现规律性可以测定Si/Al判断晶体中是否有不均匀Al分布,DICP,Al16.530.8,HZSM-5,DICP,IR法测定Si/Al,只对特定体系适用,组成规律变化会体现在IR光谱中,
7、DICP,DICP,分子筛酸性的测定,酸碱中和(指示剂法)TPDIR1H-NMR31P-NMRTPD和IR最常用,DICP,H-MAS-NMR spectrum of HY zeolite,DICP,IR spectra of HY zeolite without and with adsorbed pyridine, HY HY+Pyridine,(sodalite),(supercage),(B),(Lewis),DICP,Pyridine adsorption on different zeolites samples,P.A. Weyrich, W.F. Holderich, Appl
8、. Catal. A 158 (1997)145.,NH3-TPD of H-ZSM-5,Zhao et al., J. Phys. Chem. B, 106, 4462 (2002),1H & 27Al MAS NMR of H-ZSM-5,Spinning Rate = 5.0 kHz,Spinning Rate = 5.5 kHz,Introducing the Players,TMP(Trimethylphosphine)Size ca. 0.55 nm,TMPO(Trimethylphosphine Oxide)Size ca. 0.55 nm,TBPO(Tributylphosph
9、ine Oxide)Size ca. 0.82 nm,ZSM-5(10-MR),Sample Preparation Procedures,TMP Adsorptionthermal decomposition of trimethylphosphine silver iodidecomplex onto the dehydrated H-ZSM-5 at 473 K,TMPO (TBPO) Adsorption,Lunsford et al., J. Am. Chem. Soc., 107, 1540 (1985),Mueller et al., J. Phys. Chem. B, 102,
10、 2890 (1998),Interactions Between Probe Molecules and Brnsted Acid Sites,Higher Acidic Strength O-H Bond Strength 31P Chemical Shift (downfield),Formation ofTMPH+ complex,31P MAS NMR (TMP/H-ZSM-5/26),Assignments -4 ppm: TMPH+/Brnsted acid sites -50 ppm: TMP/Lewis acid sites -62 ppm: Physisorbed TMP,
11、NOTE:Acid sites with differentstrengths cannot bedifferentiated !,Lunsford et al., JACS,107, 1540 (1985),31P MAS NMR (TMPO/H-ZSM-5),MobileTMPO, Upto five 31P resonance were observed 86, 75, 67, 63 and 53 ppm for TMPO/Brnsted, Increasing Si/Al Acidic Strength , No Lewis acid sites observed, The newly
12、 observed 30 ppm peak can be ascribed due to mobile TMPO, TMPO can probes both internal and external acid sites,Spinning Rate = 10 kHz,Correlation of Results Obtained from TMPO and TBPO,Spinning Rate = 10 kHz,Zhao et al., J. Phys. Chem. B, 106, 4462 (2002), Adsorption of TMPO and TBPO on Al-MCM-41 (
13、Si/Al = 70; pore size = 2.54 nm),Mueller et al., J. Phys. Chem. B, 102, 2890 (1998), Mechanism of Acid Site Formation in Al-MCM-41 ?,31P MAS NMR of Crystalline TBPO,Acid Properties of H-ZSM-5 Determined by 31P MAS NMR in Conjunction with ICP,(1) refer to chemical shift difference w.r.t. crystalline
14、TMPO (39 ppm) or TBPO (47 ppm).(2) Data in parentheses denote (Int., Ext.) acid concentrations in (0.05) mmol/g cat.(3) Assume 1:1 relation between adsorbate and Brnsted acid site. ICP probides concentrations of Al, Si and P.,31P NMR Chemical Shift Assignments for Various Catalysts Adsorbed with TMP
15、O and TBPO,Distribution of Acid Sites for Various Catalysts,DICP,6.分子筛的催化性能,分子筛的特点多孔晶体 孔道结构规整 Shape selective effect 比表面积大 High activity 组成可调变性 酸、碱性可调 离子交换性 氧化还原性能 TS-1,?. 结构可调变性据反应特点选择分子筛,DICP,Shape-selective effect,规整孔道结构使分子筛具有特殊的催化性能Reactant shape selectivityProduct shape selectivityReactant shap
16、e selectivity and product shape selectivity are strongly depending on crystal size and activityRestricted transition state shape selectivityRestricted transition state shape selectivity is independent of crystal size and activity, but depends on pore and cavity diameters and on zeolites structures,D
17、ICP,Reactant shape selectivityProduct shape selectivity,DICP,Reactant shape selectivity,Dehydration of n- and iso-butanol on Ca-X and Ca-A,DICP,Product shape selectivity,CH3OH,C5-C11,汽油,C2-C4,烯烃,ZSM-5,SAPO-34,MTG,MTO,CH3OH toluene p-xylene,改性ZSM-5,DICP,Liquid Phase Alkylation of Naphthalene over Lar
18、ge Pore Zeolites,R,R,Background,PEN PBN 塑料液晶中间体,- 中法PICS项目,DICP,T-butylation of Naphthalene with t-butanol,Reaction Results,reaction time = 2hs,No 1-TBN,DICP,Restricted transition state shape selectivity,Disproportionation of dialkylbenzene over medium pore zeolite (HMd, ZSM-5)双分子反应,形成中间过渡态需要较大的空间Th
19、e activity on various zeolites (ZSM-5, ZSM-4, Mordenite, Y) were correlated with their effective pore size.,DICP,分子筛催化的液相有机反应,酸碱功能芳烃的亲电取代反应烷基化酰化卤化脂肪族化合物的亲核取代反应酯化 缩合反应异构化、重排消去、加成,DICP,分子筛催化的液相有机反应,金属功能氧化反应酸性金属双功能,Cat: TS-1, .,DICP,DICP,重要的分子筛,A : (detergents, desiccation and separation) ;FAU : X (des
20、iccation, purification, separation) and Y (separation, catalysis) ;MOR : (adsorption and catalysis) ;LTL : KL-type zeolite (catalysis: aromatization) ;MFI : Silicalite and ZSM-5 (adsorption and catalysis) ;BEA : Beta-type zeolite (catalysis: cumene) ;MTW : zeolite MCM-22 (catalysis: ethylbenzene, pr
21、obably cumene ?) ;CHA : SAPO-34 (methanol to olefins or MTO process- demonstration unit );FER : Ferrierite (skeletal isomerization of n-butenes- demonstration unit) ;AEL and/or TON : SAPO-11 and possibly ZSM-22 (improvement of pour point for petroleum cuts by straight long paraffin isomerization) ;S
22、tructures not revealed (for aromatic C8 isomerization) : one is certain (IFP) and the second is possible (UOP).,DICP,7. 规整孔道介孔材料,Mobil researchers in 1992, cationic surfactant pore size 1.5-10nm, high surface areas 1200 m2/glow hydrthermal stability, basic condition,Hexagonal (p6m),Liquid crystal te
23、mplate routes,Cubic Ia3d,lamellar,MCM-41,MCM-48,MCM-50,A New Family of Mesoporous Materials M41S,DICP,介孔材料的形成机理,1. 层状机理:,1993年G. D. Stucky,1996年日本Inagaki:,pH decreasing,The mechanism for formation of FSM-16,2. 棒状机理:,1994年M. E. Davis,A. Monnier etal. Science, 261,1299(1993),C. Chen, etal. Microporous
24、 Mater., 4,1(1995),S. B. Inagaki,CHEM SOC JPN 69, 1449(1996),DICP,介孔材料的形成机理,Cooperative Assembly Approach:,Q. Huo etal. Nature, 368, 317(1994).,DICP,microporous zeolites,MCM-41,pore size 1.1 nm,pore size 2-6 nm,Applications: catalysis, separation, adsorption, sensor, nanodevice and fabrication of na
25、nostructured materials advantage in the mass diffusion and transport because of their interconnecting networks,Bicontinuous helix 3D cubic mesostructure Ia3d, MCM-48,J. Thomas, O. Terasaki et al., Acc. Chem. Res. 2001, 34, 583-594,DICP,Cubic Caged Mesoporous Silica SBA-1,low temperature synthesis,-5
26、C, acid synthesis, large head group surfactant, C16H33N(Et)3Brwell defined morphologyan epitaxial phase transformation,O. Terasaki, T. Tatsumi, JACS, 2002, 123, 12089,Q. Huo etal. Nature, 368, 317(1994).,DICP, 3D caged structure, cubic Im3m triblock copolymer with long EO chains F127, EO106PO70EO106
27、,F108, F98, Brij 700, acid synthesis, highly ordered,XRD patterns,N2 sorption isotherms,D. Zhao, et al. J. Am. Chem. Soc. 1998, 120, 6024,8.0 nm,Large Pore Cubic Caged SBA-16,O. Terasaki, D. Zhao et al. Nature 408, 449(2000),100,110,111,Cell parametera = 13.3 nmWindow size 2.3 nmCavity surfaceSphere
28、 diameter d = 9.5 nm,XRD patterns,Structure model,DICP,Mesoporous Silica MCM-48 and Carbons CMK-4,R. Ryoo et al., J. Phys. Chem. B, 103, 7743, 1999.S. Jun, S. H. Joo, R. Ryoo, et al., J. Am. Chem. Soc., 122(43); 10712-10713, 2000.S. Joo, R. Ryoo et al., Microporous Mesoporous Mater., 44-45, 153-158,
29、 2001.,DICP,D. Zhao, Science, 1998, 279, 548,TEM images,o,Mesoporous Silica SBA-15,block copolymer templatingacidic synthesis conditionlarge pore size (4.6 40 nm)thermally and hydrothermally stable highly orderedthick silica wall, microporous walls high surface areas ( 1000 m2/g) pore volume (1.02.5
30、 cm3/g),N2 sorption isotherms,XRD patterns,D. Zhao, et al. J. Am. Chem. Soc. 1998, 120, 6024,S.-H. Joo, R. Ryoo, M. Jaroniec, J. Phys. Chem. B 2002, 106, 4640,N2 sorption isotherms,initial parts of plots,Synthesis of Mesoporous Materials,Surfactant +Inorganic source,hydrothermal,Synthetic Characters
31、 for Mesoporous Materials:1. low temperature , -5CRT, 150 C2. fast formation rate 1 min3. composition is variable, tetrahedron, octahedron4. non-aqueous synthesis, surfactant templating5. morphology control,Structure characters:1. non-perfect crystal, long range order (no code)2. amorphous inorganic
32、 walls3. weck interaction (H-bonding, ligand, van der Waals)4. hydrothermally unstable,pH, media,mesoporous materials,Synthesis Routes to Mesoporous Materials,Q. Huo etal. Nature, 368, 317(1994). S.A. Bagshaw, etal. Science, 269, 1242(1995)J. Y. Ying, ANGEW CHEM INT EDIT 38, 56(1999)D. Zhao, Science
33、, 1998, 279, 548,MCM-41 (p6m), MCM-48 (Ia3d), MCM-50 (L), SBA-6 (Pm3n), SBA-8 (cmm), FUD-2(Fd3m),f, I+XH+S S= nonionic surfactant, block copolymers,Non-silica oxide mesostructures, e.g. W, Mo,SBA-3 (p6m), SBA-1 (pm3n), SBA-2 (P63/mmc),MHS, MUX, worm-like dirordered mesopore,Hexagonal , cubic mesostr
34、uctures, Nb, Ta,SBA-15 (p6m), SBA-16 (Im3m), SBA-12 (P63/mmc), SBA-11(Pm3m), FDU-1(Im3m), FDU-4, 5 SBA-13, 14,DICP,8. 分子筛研究的几个热点方向,DICP,Sessions in 13-IZC,DICP,几个热点方向,传统分子筛研究仍持续保持活力,Avelino Corma, Maria J. Diaz-Cabanas, Joaquin Martinez-Triguero, Fernando Rey & Jordi Rius,A large-cavity zeolite with
35、 wide pore indows and potential as an oil refining catalyst,Nature,514-517(418), 2002,DICP,DICP,DICP,介孔分子筛,目前仍没有能够耐受800oC长期水热处理的材料催化应用背景之一是用于重质油的加工,DICP,规整孔道结构的碳分子筛,Zhixin Ma, Takashi Kyotani* and Akira Tomita, Preparation of a high surface area microporous carbon having the structural regularity of
36、 Y zeolite, Chem. Commun., 2000, 23652366,DICP,孔道规整的无机有机复合材料,国际进展NATURE, VOL 416, p304-307, 21 MARCH 2002 An ordered mesoporous organosilica hybrid material with a crystal-like wall structureShinji Inagaki, Shiyou Guan, Tetsu Ohsuna, Osamu Terasaki,DICP,Structural models of mesoporous benzenesilica.
37、 A, B, Images of the layered arrangement of SiO1.5C6H4SiO1.5 units in the walls. The structure was optimized by minimizing the three-dimensional periodic lattice using the force field COMPASS. C, D, Images of the hexagonal lattice constructed with the layered pore-wall structure. The structure was a
38、lso minimized by using the force field COMPASS. Atoms are represented as a stick model. Silicon, orange; oxygen, red; carbon, white; hydrogen, yellow.,DICP,SCIENCE, VOL 291, p1021-1023, 9 FEBRUARY 2001Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large PoresBanglin Chen, M. Eddaoudi, S. T. Hyde, M. OKeeffe, O. M. YaghiSCIENCE, VOL 295,p469-472, 18 JANUARY 2002Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane StorageM. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. OKeeffe, O. M. Yaghi1,DICP,Thank you,