1、中国特级教师高考复习方法指导数学复习版中国教育开发网高考数学必胜秘诀在哪?概念、方法、题型、易误点及应试技巧总结1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点 F ,F 的距离的和等于常数12,且此常数 一定要大于 ,当常数等于 时,轨迹是线段 F F ,当常数小于 时,2a2a21F21F21F无轨迹;双曲线中,与两定点 F ,F 的距离的差的绝对值等于常数 ,且此常数 一定要小于aa|F F |,定义中的“绝对值 ”与 |F F |不可忽视。若 |F F |,则轨迹是以 F ,F 为端点的12 a1212两条射线,若 |F F |,则轨迹不存在。若去
2、掉定义中的绝对值则轨迹仅表示双曲线的一支。 如12(1)已知定点 ,在满足下列条件的平面上动点 P 的轨迹中是椭圆的是 A)0,3(,B C D (答:C) ;42P6P0211221P(2)方程 表示的曲线是_(答:双曲线的左支)22(6)8xyxy(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母” ,其商即是离心率 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的e关系,要善于运用第二定义对它们进行相互转化。如已知点 及抛物线 上一动点)0,2(Q42xyP(x,y),则 y+|PQ|的最小值是_(答:2)2.圆锥曲线的标准方
3、程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在 轴上时 ( ) (参数方程,其中 为参x12bya0acosinxayb数) ,焦点在 轴上时 1( ) 。方程 表示椭圆的充要条件是什么?y2 2ABC(ABC0,且 A,B ,C 同号,AB) 。如(1)已知方程 表示椭圆,则 的取值范围132kxk为_(答: ) ;(2)若 ,且 ,则 的最大值是_,(3,)(,)2Ryx, 62yyx的最小值是_(答: )2yx5(2)双曲线:焦点在 轴上: =1,焦点在 轴上: 1( ) 。方程x2ba2ba0,ab表示双曲线的充要条件是什么?(ABC0,且
4、A,B 异号) 。如(1)双曲线的离心率等ABC于 ,且与椭圆 有公共焦点,则该双曲线的方程_(答: ) ;(2)设中心在51492y 4xy坐标原点 ,焦点 、 在坐标轴上,离心率 的双曲线 C 过点 ,则 C 的方程为OF2 2e)0,(P_(答: )26x(3)抛物线:开口向右时 ,开口向左时 ,开口向上时(0)ypx2ypx,开口向下时 。2(0)xpy23.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由 , 分母的大小决定,焦点在分母大的坐标轴上。如已知方程x2表示焦点在 y 轴上的椭圆,则 m 的取值范围是_(答: )22m )23,1(,((2)双曲线:由
5、 , 项系数的正负决定,焦点在系数为正的坐标轴上;2(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。中国特级教师高考复习方法指导数学复习版中国教育开发网特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点 F ,F 的位置,是椭圆、12双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数 ,确定椭圆、双曲,ab线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中, 最大, ,在双曲线中, 最大, 。a22bcc22ab4.圆锥曲线的几何性质:(1)椭圆(以 ( )为例):范围: ;焦点:两个12yx0a
6、b,xaby焦点 ;对称性:两条对称轴 ,一个对称中心(0,0) ,四个顶点 ,其(,0)c,xy(,0)b中长轴长为 2 ,短轴长为 2 ;准线:两条准线 ; 离心率: ,椭圆 ,a 2axcce1e越小,椭圆越圆; 越大,椭圆越扁。如(1)若椭圆 的离心率 ,则 的值是ee 15my51m_(答:3 或 ) ;(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为 1 时,则椭圆长轴5的最小值为_(答: )(2)双曲线(以 ( )为例):范围: 或 ;焦点:21xyab0,abxa,yR两个焦点 ;对称性:两条对称轴 ,一个对称中心(0,0) ,两个顶点 ,其中(,0)cxy(,0)a
7、实轴长为 2 ,虚轴长为 2 ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;准线:两条准线 ; 离心率: ,双曲线 ,等轴双曲线,xyk2ccea1e, 越小,开口越小, 越大,开口越大;两条渐近线: 。如(1)双曲线的渐近ee byx线方程是 ,则该双曲线的离心率等于 _(答: 或 ) ;(2)双曲线023yx 13的离心率为 ,则 = (答:4 或 ) ;(3)设双曲线21ab5:ab( a0,b0)中,离心率 e ,2,则两条渐近线夹角 的取值范围是_(答:2 2) ; ,3(3)抛物线(以 为例):范围: ;焦点:一个焦点 ,其中2(0)ypx0,xyR(,0)2p的
8、几何意义是:焦点到准线的距离;对称性:一条对称轴 ,没有对称中心,只有一个顶点p (0,0) ;准线:一条准线 ; 离心率: ,抛物线 。如设 ,则抛物线cea1eRa,的焦点坐标为_ (答: ) ;24axy)16,0(5、点 和椭圆 ( )的关系:(1)点 在椭圆外0(,)Py2byax0(,)Pxy;(2)点 在椭圆上 1;(3)点 在椭圆内201xab0(,)20byax,201xyab6直线与圆锥曲线的位置关系:(1)相交: 直线与椭圆相交; 直线与双曲线相交,但直线与双曲线相交不一定中国特级教师高考复习方法指导数学复习版中国教育开发网有 ,当直线与双曲线的渐近线平行时,直线与双曲线
9、相交且只有一个交点,故 是直线与双曲0 0线相交的充分条件,但不是必要条件; 直线与抛物线相交,但直线与抛物线相交不一定有 ,00当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故 也仅是直线与抛物线相交的充分条件,但不是必要条件。如(1)若直线 y=kx+2 与双曲线 x2-y2=6 的右支有两个不同的交点,则 k的取值范围是_(答:(- ,-1)) ;(2)直线 ykx1=0 与椭圆 恒有公共点,则315215ymm 的取值范围是_(答: 1,5)(5,+) ) ;(3)过双曲线 的右焦点直线交双曲12线于 A、B 两点,若AB4,则这样的直线有_条(答:3) ;(2)相切:
10、 直线与椭圆相切; 直线与双曲线相切; 直线与抛物线相切;000(3)相离: 直线与椭圆相离; 直线与双曲线相离; 直线与抛物线相离。特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时 ,直线与抛物线相交,也只有一个交点;(2)过双曲线 1 外一点 的直线与双曲线只有一个2byax0(,)Pxy公共点的情况如下:P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;P 点在两条渐近线之间且包含双曲线的区域内时,
11、有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;P 为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。如(1)过点作直线与抛物线 只有一个公共点,这样的直线有 _(答:2) ;(2)过点(0,2)与双曲线)4,2(xy82有且仅有一个公共点的直线的斜率的取值范围为 _(答: ) ;(3)过双曲69yx 45,线 的右焦点作直线 交双曲线于 A、B 两点,若 4,则满足条件的直线 有_条(答:12l l3) ;(4)对于抛物线 C:
12、 ,我们称满足 的点 在抛物线的内部,若点xy4202xy),(0yM在抛物线的内部,则直线 : 与抛物线 C 的位置关系是_(答:相离) ;),(0yxMl)(0(5)过抛物线 的焦点 作一直线交抛物线于 P、 Q 两点,若线段 PF 与 FQ 的长分别是 、 ,2F pq则 _(答:1) ;(6)设双曲线 的右焦点为 ,右准线为 ,设某直线 交qp1 1962Flm其左支、右支和右准线分别于 ,则 和 的大小关系为 _(填大于、小于或RQP,R等于) (答:等于) ;(7)求椭圆 上的点到直线 的最短距离(答: ) ;28472yx 01623yx813(8)直线 与双曲线 交于 、 两点
13、。当 为何值时, 、 分别在双曲线的两1axy13ABaAB支上?当 为何值时,以 AB 为直径的圆过坐标原点?(答: ; ) ;,a7、焦半径(圆锥曲线上的点 P 到焦点 F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径 ,其中 表示 P 到与 F 所对应的准线的距离。如(1)已知椭圆red上一点 P 到椭圆左焦点的距离为 3,则点 P 到右准线的距离为 _(答: ) ;(2)已知抛1625yx 35物线方程为 ,若抛物线上一点到 轴的距离等于 5,则它到抛物线的焦点的距离等于_;(3)x82 y若该抛物线上的点 到焦点的距离是 4,则点 的坐标为_(答: )
14、;(4)点 P 在椭圆MM7,(2)中国特级教师高考复习方法指导数学复习版中国教育开发网上,它到左焦点的距离是它到右焦点距离的两倍,则点 P 的横坐标为_(答: ) ;1925yx 251(5)抛物线 上的两点 A、B 到焦点的距离和是 5,则线段 AB 的中点到 轴的距离为_(答:x2 y2) ;(6)椭圆 内有一点 ,F 为右焦点,在椭圆上有一点 M,使 之值134y)1,(P FP最小,则点 M 的坐标为_(答: ) ;,3628、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解。设椭圆或双曲线上的一点 到两焦点 的距离分别为 ,焦点 的面
15、0(,)xy12,F12,r12积为 ,则在椭圆 中, ,且当 即 为短轴端点时, 最大为S12byax)arcos21b2rP ; ,当 即 为短轴端点时, 的最大值为max2rcos0tn|Sy0| maxSbc;对于双曲线 的焦点三角形有: ; 。21yb 21arcosrb 2cotsin12br如(1)短轴长为 ,离心率 的椭圆的两焦点为 、 ,过 作直线交椭圆于 A、B 两点,则532e1F的周长为_(答:6) ;(2)设 P 是等轴双曲线 右支上一点,F 1、F 2 是2ABF )0(22ayx左右焦点,若 ,|PF 1|=6,则该双曲线的方程为 (答: ) ;(3)椭021FP
16、 24xy圆 的焦点为 F1、F 2,点 P 为椭圆上的动点,当 0 时,点 P 的横坐标的取值范围是94xy PF2 PF1 (答: ) ;(4)双曲线的虚轴长为 4,离心率 e ,F 1、F 235(,) 6是它的左右焦点,若过 F1的直线与双曲线的左支交于 A、B 两点,且 是 与 等差中项,则2A2B_(答: ) ;(5)已知双曲线的离心率为 2,F 1、F 2 是左右焦点,P 为双曲线上一AB82点,且 , 求该双曲线的标准方程(答: ) ;6021P321FPS 14xy9、抛物线中与焦点弦有关的一些几何图形的性质:(1)以过焦点的弦为直径的圆和准线相切;(2)设 AB 为焦点弦,
17、 M 为准线与 x 轴的交点,则AMFBMF;(3)设 AB 为焦点弦,A、B 在准线上的射影分别为 A ,B ,若 P 为 A B 的中点,则 PAPB;(4)若 AO 的延长线交准线于 C,则 BC 平行于11x 轴,反之,若过 B 点平行于 x 轴的直线交准线于 C 点,则 A,O,C 三点共线。 10、弦长公式:若直线 与圆锥曲线相交于两点 A、B ,且 分别为 A、B 的横坐标,则ykb12,x ,若 分别为 A、B 的纵坐标,则 ,若弦 AB 所在直21kx12, 2yk线方程设为 ,则 。特别地,焦点弦(过焦点的弦):焦点弦的弦长的yb12ky计算,一般不用弦长公式计算,而是将焦
18、点弦转化为两条焦半径之和后,利用第二定义求解。如(1)过抛物线 y2=4x 的焦点作直线交抛物线于 A(x 1,y 1) ,B (x 2,y 2)两点,若 x1+x2=6,那么|AB|等于_(答:8) ;(2)过抛物线 焦点的直线交抛物线于 A、B 两点,已知|AB|=10,O 为坐标2原点,则 ABC 重心的横坐标为_(答:3) ;11、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以 为中点的弦所在直线的斜率 k= ;在双曲线 中,以12byax0(,)Pxy 02yaxb21xyab中国特级教师高考复习方法指导数学复习版中国教育开发网为中点的弦所在直线的
19、斜率 k= ;在抛物线 中,以 为中点的弦0(,)Pxy 02yaxb2(0)ypx0(,)Pxy所在直线的斜率 k= 。如(1)如果椭圆 弦被点 A(4,2)平分,那么这条弦所在的直线0py1369方程是 (答: ) ;(2)已知直线 y=x+1 与椭圆 相交于8x21(0)xyabA、B 两点,且线段 AB 的中点在直线 L:x2y=0 上,则此椭圆的离心率为_(答: ) ;(3)2试确定 m 的取值范围,使得椭圆 上有不同的两点关于直线 对称(答:1342y mxy4) ; 213,特别提醒:因为 是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,0务必别忘了检验 !1
20、2你了解下列结论吗?(1)双曲线 的渐近线方程为 ;12byax02byax(2)以 为渐近线(即与双曲线 共渐近线)的双曲线方程为 为参1(2byax数, 0)。如与双曲线 有共同的渐近线,且过点 的双曲线方程为_(答:1692yx )32,()2419xy(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为 ;21mxny(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为 ,焦准距(焦点到相应准线的距离)ba为 ,抛物线的通径为 ,焦准距为 ; 2bc2pp(5)通径是所有焦点弦(过焦点的弦)中最短的弦;(6)若抛物线 的焦点弦为 AB, ,则 ;(0)yx12(,)(,)AxyB
21、12|ABxp2211,4px(7)若 OA、OB 是过抛物线 顶点 O 的两条互相垂直的弦,则直线 AB 恒经过定点2()ypx(,0)13动点轨迹方程:(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;(2)求轨迹方程的常用方法:直接法:直接利用条件建立 之间的关系 ;如已知动点 P 到定点 F(1,0)和直线,xy(,)0Fxy的距离之和等于 4,求 P 的轨迹方程(答: 或 );3x 214)(3)x24(03)yx待定系数法:已知所求曲线的类型,求曲线方程先根据条件设出所求曲线的方程,再由条件确定其待定系数。如线段 AB 过 x 轴正半轴上一点 M(m,0) ,端点 A、
22、B 到 x 轴距离之积为)(2m,以 x 轴为对称轴,过 A、O 、B 三点作抛物线,则此抛物线方程为 (答:中国特级教师高考复习方法指导数学复习版中国教育开发网) ; 2yx定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;如(1)由动点 P 向圆 作两条切线 PA、PB,切点分别为 A、B,APB=60 0,则动点 P 的轨迹方程21xy为 (答: );(2)点 M 与点 F(4,0)的距离比它到直线 的距离24 05xl且小于 1,则点 M 的轨迹方程是_ (答: );(3) 一动圆与两圆M: 和N:16yx12y都外切,则动圆圆心的轨迹为 (答:双曲
23、线的一支);082yx代入转移法:动点 依赖于另一动点 的变化而变化,并且 又在某已知曲(,)xy0(,)Q0(,)Q线上,则可先用 的代数式表示 ,再将 代入已知曲线得要求的轨迹方程;如动点 P 是抛物,0,线 上任一点,定点为 ,点 M 分 所成的比为 2,则 M 的轨迹方程为_(答:12xy1A PA);36参数法:当动点 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将 均(,)Pxy ,xy用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。如(1)AB 是圆 O 的直径,且|AB|=2a,M 为圆上一动点,作 MNAB,垂足为 N,在 OM 上取点 ,使 ,求点
24、 的轨迹。|PNP(答: );(2)若点 在圆 上运动,则点 的轨迹方程2|xy),(1yx12y),(11xyQ是_(答: );(3)过抛物线 的焦点 F 作直线 交抛物线于 A、B 两点,1(|)xx4l则弦 AB 的中点 M 的轨迹方程是_(答: );2注意:如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行 “摘帽子或脱靴子”转化。如已知椭圆的左、右焦点分别是 F1(c,0 ) 、)0(12bayx F2(c,0) ,Q 是椭圆外的动点,满足 点 P 是线段 F1Q 与该椭圆.2|1aQF 的交点,点
25、T 在线段 F2Q 上,并且满足 (1)设.|,2T为点 P 的横坐标,证明 ;(2)求点 T 的轨迹x|1 C 的方程;(3)试问:在点 T 的轨迹 C 上,是否存在点 M,使F1MF2 的 面积 S=若存在,求 F 1MF2 的正切值;若不存在,请说明理由 . .2b (答:(1)略;(2) ;(3)当 时不存在;当xyabac 时2bac存在,此时F 1MF22)曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份对称性、利用到角公式)、
26、“方程与函数性质”化解析几何问题为代数问题、 “分类讨论思想”化整为零分化处理、 “求值构造等式、求变量范围构造不等关系”等等.如果在一条直线上出现“三个或三个以上的点” ,那么可选择应用“斜率或向量”为桥梁转化.14、解析几何与向量综合时可能出现的向量内容:(1) 给出直线的方向向量 或 ;ku,1nm,(2)给出 与 相交,等于已知 过 的中点;OBAOBA(3)给出 ,等于已知 是 的中点;0PNMPMN(4)给出 ,等于已知 与 的中点三点共线;Q,(5) 给出以下情形之一: ;存在实数 ;若存在实数C/,ABC且,等于已知 三点共线.,1,C且 ,(6) 给出 ,等于已知 是 的定比
27、分点, 为定比,即OBAPPABP中国特级教师高考复习方法指导数学复习版中国教育开发网(7) 给出 ,等于已知 ,即 是直角,给出 ,等于已知0MBAMBA0mMBA是钝角, 给出 ,等于已知 是锐角,ABm(8)给出 ,等于已知 是 的平分线/P(9)在平行四边形 中,给出 ,等于已知 是菱形;ABCD0)()(ADBAABCD(10) 在平行四边形 中,给出 ,等于已知 是矩形;|(11)在 中,给出 ,等于已知 是 的外心(三角形外接圆的圆心,22OC三角形的外心是三角形三边垂直平分线的交点) ;(12) 在 中,给出 ,等于已知 是 的重心(三角形的重心是三0角形三条中线的交点) ;(13)在 中,给出 ,等于已知 是 的垂心(三角形的ABCAB OABC垂心是三角形三条高的交点) ;(14)在 中,给出 等于已知 通过 的内心;OAP()|C)(RP(15)在 中,给出 等于已知 是 的内心(三角形内切圆AB,0cBba AB的圆心,三角形的内心是三角形三条角平分线的交点) ;(16) 在 中,给出 ,等于已知 是 中 边的中线;C12DACDC