1、函数的凹凸性在高考中的应用崇仁二中 廖国华教学目的: 了解函数的凹凸性,掌握增量法解决凹凸曲线问题。培养学生探索创新能力,鼓励学生进行研究型学习。教学重点:掌握增量法解决凹凸曲线问题教学难点:函数的凹凸性定义及图像特征教学过程:一、课题导入 1. 展示崇仁县第二中学 2008 届高三第一次月考试题 12 得分统计表班级 考试人数 答对人数 答错人数 正确率高三(1)班(理) 54 19 35 35.1%高三(11)班(文) 61 12 49 19.7%2.组织学生现场解答月考试题 12 并进行得分统计,以引出课题题目: 一高为、满缸水量为的鱼缸的截面如图 1 所示,其底部碰了一个小洞,满缸水从
2、洞中流出若鱼缸水深为时水的体积为,则函数()的大致图象可能是图 2 中的( )(选自中学数学教学参考2001 年第 12 合期)的试题集绵函数凹凸性问题是近几年高考与平时训练中的一种新题型这种题情景新颖、背景公平,能考查学生的创新能力和潜在的数学素质,体现“高考命题范围遵循教学大纲,又不拘泥于教学大纲” 的改革精神但由于函数曲线的凹凸性在中学教材中既没有明确的定义,又没有作专门的研究,因此,就多数学生而言,对这类凹凸性曲线问题往往束手无策;而教师的“导数”理解又不能被学生所接受所以,对这类非常规性问题作一探索,并引导学生去得到一般性的解法,无疑对学生数学素质的提高和创新精神的培养以及在迅速准确
3、解答高考中出现此类的试题都是十分重要的。图 1 图 2二、新课讲授1、 凹凸函数定义及几何特征 引出凹凸函数的定义:如图 3 根据单调函数的图像特征可知:函数 与 都是增函数。但是 与)(1xf2f )(1xf递增方式不同。不同在哪儿?把形如 的增长方式的函数称为凹函数,而形如)(2xf的增长方式的函数称为凸函数。 凹凸函数定义(根据同济大学数学教研室主编高等数学第 201 页):设函数 为定义在区间 上的函数,若对(a,b)上任意两点 、 ,恒有:fI 1x2(1) ,则称 为(a,b)上的凹函数;1212()(xfxff(2) ,则称 为(a,b)上的凸函数。f 凹凸 函数的几何特征:几何
4、特征 1(形状特征)图 4(凹函数) 图 5(凸函数) 如图,设 是凹函数 y= 曲线上两点,它们对应的横坐标 ,则21,A)(xf 12x, ,过点 作 轴的垂线交函数于 A,交 于 B, 11(,)Axf22(,)xf12o21凹函数的形状特征是:其函数曲线任意两点 与 之间的部分位于弦 的下方;1A221凸函数的形状特征是:其函数曲线任意两点 与 之间的部分位于弦 的上方。简记为:形状凹下凸上。几何特征 2(切线斜率特征)图 6(凹函数) 图 7(凸函数)设 是函数 y= 曲线上两点,函数曲线 与 之间任一点 A 处切线的斜率:21,A)(xf 1A2凹函数的切线斜率特征是:切线的斜率
5、y= 随 x 增大而增大;)(f凸函数的切线斜率特征是:切线的斜率 y= 随 x 增大而减小;简记为:斜率凹增凸减。几何特征 3(增量特征)图 8(凹函数) 图 9(凸函数) 图 10(凹函数) 图 11(凸函数)设函数()为凹函数,函数()为凸函数,其函数图象如图 8、9 所示,由图10、11 可知,当自变量逐次增加一个单位增量 时,函数()的相应增量 , , ,越来越大;函数()的相应增量 , , ,越来越小; 由此,对的每一个单位增量 ,函数的对应增量 (1,2,3,)凹函数的增量特征是: 越来越大;凸函数的增量特征是: 越来越小;简记为:增量凹大凸小。弄清了上述凹凸函数及其图象的本质区
6、别和变化的规律,就可准确迅速、简捷明了地解决有关凹凸的曲线问题函数凹凸性的应用应用 1 凹凸曲线问题的求法 下面我们用增量特征(增量法)准确迅速、简捷明了地解决有关凹凸的曲线问题题目: 一高为、满缸水量为的鱼缸的截面如图 12 所示,其底部碰了一个小洞,满缸水从洞中流出若鱼缸水深为时水的体积为,则函数()的大致图象可能是图 13 中的( ) 解:据四个选项提供的信息(从 ),我们可将水“流出”设想成“流入”,这样,每当增加一个单位增量 时,根据鱼缸形状可知 V 的变化开始其增量越来越大,但经过中截面后则越来越小,故关于的函数图象是先凹后凸的,因此,选例 1 向高为的水瓶中注水,注满为止,如果注
7、水量 V 与水深的函数关系的图象如图14 所示,那么水瓶的形状是(图 15 中的)( )(1998 年全国高考题) 解:因为容器中总的水量(即注水量) V 关于的函数图象是凸的,即每当增加一个单位增量 ,V 的相应增量 越来越小这说明容器的上升的液面越来越小,故选 图 12 图 13图 14 图 15例 2 在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图象如图 16 所示现给出下面说法: 前 5 分钟温度增加的速度越来越快; 前 5 分钟温度增加的速度越来越慢; 5 分钟以后温度保持匀速增加; 5 分钟以后温度保持不变其中正确的说法是( ) 解:因为温度关于时间的图
8、象是先凸后平行直线,即 5 分钟前每当增加一个单位增量 ,则相应的增量 越来越小,而 5 分钟后是关于的增量保持为 0,故选 注:本题也选自中学数学教学参考 2001 年第 12 合期的试题集绵,用了增量法就反成了“看图说画” 例 3(06 重庆 理)如图所示,单位圆中弧 AB 的长为 x,f(x)表示弧 AB 与弦 AB 所围成的弓形面积的倍,则函数 y=f(x)的图象是( )图 17 解:易得弓形 AxB 的面积的 2 倍为 f(x)=-sin由于 是直线,每当增加一个单位增量 , 的对应增量 不变;而 sin是正弦曲线,在0, 上是凸的,在, 2上是凹的,故每当增加一个单位增量 时, 对
9、应的增量(=1,2,3,)在0, 上越来越小,在,2 上是越来越大,故当增加一个单位增量 时,对应的 f(x)的变化,在0,上其增量 f(x)(1,2,3,)越来越大,在,2 上,其增量 f(x)则越来越小,故f(x)关于的函数图象,开始时在0,上是凹的,后来在 ,2上是凸的,故选DA BC D图 16例 4(07 江西) 四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示盛满酒后他们约定:先各自饮杯中酒的一半设剩余酒的高度从左到右依次为 h1,h2,h3,h4,则它们的大小关系正确的是()图 18Ah 2h 1h 4 Bh 1h 2h 3
10、 Ch 3h 2h 4 Dh 2h 4h 1解: 设内空高度为 H, 剩余酒的高度关于酒杯中酒的体积函数从左到右依次为 V1(h)、V2(h)、V 3(h)、V 4(h),根据酒杯的形状可知函数 V1(h)、V 2(h)、V 4(h)的图象可为 图 19因为函数 V1(h)、V 2(h)为凹函数, V 1(h)当 h 从H,h 增加一个单位增量,V(1,2,3,)增大,则 h1 0.5H =h4;同理 V2(h)当 h 从H,h 增加一个单位增量,V (1 ,2,3,)增大,则 h2 0.5H =h4;所以 h1 h4、 h2 h4;由 V1(h)、V 2(h)图象可知,h 从 Hh 2,V
11、1(h)V 2(h),而 0.5 V1(h)V1(h),V 2(h)=0.5 V2(h),则当 V1(h)=0.5 V1( h)时 h1 h2,所以答案为 A.应用 2 凹凸函数问题的求法例 1、(2005湖北卷) 在 y=2x, y=log2x, y=x2, y=cos2x 这四个函数中,当 00; .()ff(xfff当 f(x)=lgx 时,上述结论中正确结论的序号是 () 。本题把对数的运算()、对数函数的单调性( )、对数函数图像的凹凸性()等知识有机的合成为一道多项填空题,若对函数的性质有较清楚的理解便不会有困难,而靠死记硬背的考生就会有问题。通过以上的例子可以看出在高三复习时,有
12、必要留意以高等数学知识为背景的创新题与信息题,也有必要让学生了解简单高等数学与初等数学结合的知识,这样既可以达到简化运算、避免易错点的目的,还可以突破难点,找到规律性的解题途径,更为高等数学的学习打下良好的基础。同时使学生们认识到知识学的越多、越深入,解决起问题来越有规律性、越简单。从而使他们渴望学习,渴望积累,更进一步的增加分析问题,解决问题的能力。三、学生练习1、如图 20 所示,半径为 2 的切直线于,射线从出发绕着点顺时针旋转到旋转过程中,交于记为、弓形的面积为=(),那么()的图象是图 18 中的( )图 20 图 212、 如图 22 所示,液体从球形漏斗漏入一圆柱形烧杯中,开始时
13、漏斗中盛满液体,经过3 分钟漏完,已知烧杯中液面上升的速度是一个常量,是漏斗中液面下落的距离,则与下落时间(分)的函数关系用图象表示可能是图 11 中的( ) 图 22 图 233、(94 年高考)已知函 ,判断xaflogRx,x1,021且且与2x1的大小,并加以证明。21fx24、 在 , 四个函数中,当 时,使2211,xffxffx2143log,121x成立的函数是 ( ) x21A. B . C. D.211f22xfxf23xf214log解答:1、解:易得弓形的面积为=2(-sin) 由于 是直线,每当增加一个单位增量 , 的对应增量 不变;而 sin是正弦曲线,在 0, 上
14、是凸的,在, 2上是凹的,故每当增加一个单位增量 时, 对应的增量 (=1, 2,3,)在 0, 上越来越小,在,2上是越来越大,故当增加一个单位增量 时,对应的的变化,开始时在0,上其增量 (1,2,3,)越来越大,经过后,即在,2上,则越来越小,故关于的函数图象,开始时在0,上是凹的,后来在,2 上是凸的,故选2、解:同例 4 分析可知,每当增加一个单位增量 ,的变化开始增量 越来越小,经过中截成后越来越大,故关于的函数图象是先凸后凹,因此选3、解: 。2121xaxaa21xfloglog ,0,21 (当且时仅当 x1=x2 时取”=”号)x21当 a1 时,有 2121xaxalogl ,即 2xf12axa121llog21f当 0a1 时,有 ,即 2xf12121xaxalogl 21xf(当且时仅当 x1=x2 时取”=”号)