概率论与数理统计 试题(含答案).docx

上传人:11****ws 文档编号:3280726 上传时间:2019-05-28 格式:DOCX 页数:4 大小:87.93KB
下载 相关 举报
概率论与数理统计 试题(含答案).docx_第1页
第1页 / 共4页
概率论与数理统计 试题(含答案).docx_第2页
第2页 / 共4页
概率论与数理统计 试题(含答案).docx_第3页
第3页 / 共4页
概率论与数理统计 试题(含答案).docx_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、概率论与数理统计 试卷 A 卷 第 1 页 共 4 页第一部分 基本题一、选择题(共 6小题,每小题 5分,满分 30分。在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内) (每道选择题选对满分,选错 0分)1. 事件表达式 A B 的意思是 ( )(A) 事件 A 与事件 B 同时发生 (B) 事件 A 发生但事件 B 不发生(C) 事件 B 发生但事件 A 不发生 (D) 事件 A 与事件 B 至少有一件发生答:选 D,根据 A B 的定义可知。2. 假设事件 A 与事件 B 互为对立,则事件 A B( )(A) 是不可能事件 (B) 是可能事件(C)

2、发生的概率为 1 (D) 是必然事件答:选 A,这是因为对立事件的积事件是不可能事件。3. 已知随机变量 X,Y 相互独立,且都服从标准正态分布,则 X2Y 2服从 ( )(A) 自由度为 1 的 2分布 (B) 自由度为 2 的 2分布(C) 自由度为 1 的 F 分布 (D) 自由度为 2 的 F 分布答:选 B,因为 n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为 n 的 2分布。4. 已知随机变量 X,Y 相互独立,XN(2,4),YN(2,1), 则( )(A) X+YP(4) (B) X+YU(2,4) (C) X+YN(0,5) (D) X+YN(0,3)答:选

3、C,因为相互独立的正态变量相加仍然服从正态分布,而 E(X+Y)=E(X)+E(Y)=2-2=0, D(X+Y)=D(X)+D(Y)=4+1=5, 所以有 X+YN(0,5)。5. 样本(X 1,X2,X3)取自总体 X,E(X)= , D(X)=2, 则有( ) (A) X1+X2+X3是 的无偏估计 (B) 是 的无偏估计123(C) 是 2的无偏估计 (D) 是 2的无偏估计123X答:选 B,因为样本均值是总体期望的无偏估计,其它三项都不成立。6. 随机变量 X 服从在区间(2,5)上的均匀分布,则 X 的数学期望 E(X)的值为( )(A) 2 (B) 3 (C) 3.5 (D) 4

4、答:选 C,因为在(a,b)区间上的均匀分布的数学期望为(a+b)/2。二、填空题(共 6 小题,每小题 5 分,满分 30 分。把答案填在题中横线上)1. 已知 P(A)=0.6, P(B|A)=0.3, 则 P(A B)= _答:填 0.18, 由乘法公式 P(A B)=P(A)P(B|A)=0.6 0.3=0.18。2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是 0.4,则飞机被击中的概率为_答:填 0.784,是因为三人都不中的概率为 0.63=0.216, 则至少一人中的概率就是 10.216=0.784。3. 一个袋内有 5 个红球,3 个白球,2 个黑球,任取 3 个

5、球恰为一红、一白、一黑的概率为_答:填 0.25 或 ,由古典概型计算得所求概率为 。14 1052.54C4. 已知连续型随机变量 则 PX 1.5=_,()20,.xXf其答:填 0.875,因 PX 1.5 。1.5()d875fx5. 假设 XB(5, 0.5)(二项分布), YN(2, 36), 则 E(X+Y)=_答:填 4.5,因 E(X)=5 0.5=2.5, E(Y)=2, E(X+Y)=E(X)+E(Y)=2.5+2=4.5概率论与数理统计 试卷 A 卷 第 2 页 共 4 页6. 一种动物的体重 X 是一随机变量,设 E(X)=33, D(X)=4,10 个这种动物的平均

6、体重记作 Y,则D(Y)_答:填 0.4,因为总体 X 的方差为 4,10 个样本的样本均值的方差是总体方差的 1/10。三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。由甲袋任取一个球放入乙袋,再从乙袋中取出一个球,求取到白球的概率。 (10 分)解:设从甲袋取到白球的事件为 A,从乙袋取到白球的事件为 B,则根据全概率公式有()(|)(|)2150.41732PBAPB四、已知随机变量 X 服从在区间(0,1)上的均匀分布, Y2X +1,求 Y 的概率密度函数。 (10 分)解:已知 X 的概率密度函数为 1,0,().Xxfx其Y 的分布函数 FY(y)为

7、1()212XyyyPyPF因此 Y 的概率密度函数为 ,3,()20.XyyfyFf其五、已知二元离散型随机变量(X,Y)的联合概率分布如下表所示:YX 1 1 21 0.1 0.2 0.32 0.2 0.1 0.1(1) 试求 X 和 Y 的边缘分布率(2) 试求 E(X),E(Y),D(X),D(Y),及 X 与 Y 的相关系数 XY(满分 10 分)解:(1)将联合分布表每行相加得 X 的边缘分布率如下表:X 1 2p 0.6 0.4将联合分布表每列相加得 Y 的边缘分布率如下表:Y 1 1 2p 0.3 0.3 0.4(2) E(X)1 0.6+2 0.4=0.2, E(X2)=1

8、0.6+4 0.4=2.2,D(X)=E(X2)E(X)2=2.20.04=2.16E(Y)1 0.3+1 0.3+2 0.4=0.8, E(Y2)=1 0.3+1 0.3+4 0.4=2.2D(Y)= E(Y2)E(Y)2=2.20.64=1.56E(XY)=(1) (1) 0.1+(1) 1 0.2+(1) 2 0.3+2 (1) 0.2+2 1 0.1+2 2 0.1=0.10.20.60.4+0.2+0.40.5cov(X,Y)=E(XY)E(X)E(Y)0.50.160.66概率论与数理统计 试卷 A 卷 第 3 页 共 4 页cov(,)0.6.60.31825XYD六、设某种电子

9、管的使用寿命服从正态分布。从中随机抽取 15 个进行检验,算出平均使用寿命为1950 小时,样本标准差 s 为 300 小时,以 95%的置信概率估计整批电子管平均使用寿命的置信区间。 (满分 10 分)解:已知样本均值 , 样本标准差 s=300, 自由度为 151=14, 查 t 分布表得 t0.025(14)=2.1448, 1950x算出 , 因此平均使用寿命的置信区间为 ,即(1784, 2116)。0.25.483(1)6.17st 16.x附:标准正态分布函数表21()edux(x) 0.9 0.95 0.975 0.99x 1.281551 1.644853 1.959961

10、2.326342t 分布表 Pt(n)tn)=N 0.1 0.05 0.02514 1.3450 1.7613 2.144815 1.3406 1.7531 2.131516 1.3368 1.7459 2.1199第二部分 附加题附加题 1 设总体 X 的概率密度为 (1),01,(;)xfx其其中 1 为未知参数,又设 x1,x2, ,xn是 X 的一组样本观测值,求参数 的最大似然估计值。 (满分 15 分)解:似然函数 1()niLx1ll()ldnn()niiiix令 ,解出 的最大似然估计值为l0L1lniix概率论与数理统计 试卷 A 卷 第 4 页 共 4 页附加题 2 设随机变量 X 与 Y 相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于 X 和关于 Y 的边缘分布律中的部分数值,试将其余数值填入表中的空白处。 (满分 15 分)YX y1 y2 y3 PX=xi= ipx1 8x2PY=yj= jp61解:已知 X 与 Y 独立,则pij=P(X=xi,Y=yj)=P(X=xi) P(Y=yj), 经简单四则运算,可得YX y1 y2 y3 PX=xi= ipx1 4814x2 3PY=yj= jp61231

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 医药卫生

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。