1、 Duncan Haldane 诺奖工作解读戴建辉Topology: From Spin Chains to Electronic Insulators杭州师范大学理学院 2016/12/03 Peking University主要内容:I. Spin chainsII. Electronic insulators资料来源: 网上新闻报道和解读 Haldane, Kane, Zhang 狄拉克奖获奖报告 相关参考文献北京时间10月4日 戴维索利斯戴维索利斯 迈克尔科斯特利茨 邓肯霍尔丹 “拓扑相变和物质拓扑态的理论发现” Citation: “For theoretical discoveri
2、es of topological phase transitions and topological phases of matter.” The 8 million Swedish krona (equivalent to just over $930,000) will be split among the three winners, with half going to Thouless and the other half shared by Haldane and Kosterlitz. J. M. Kosterlitz and D. J. Thouless, Long rang
3、e order and metastability in two- dimensional solids and superfluids, J. Phys. C: Solid State Phys. 5 L1246 (1972). J. M. Kosterlitz and D. J. Thouless Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C: Solid State Phys. 6 1181203 (1973). D. R. Nelson and J. M. Kos
4、terlitz,Universal jump in the superfluid density of two-dimensional superfluids, Phys. Rev. Lett. 39, 1201 (1977). F. D. M. Haldane, Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Nel State, Phys. Rev. Lett. 50, 1
5、153 (1983). F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”, Phys. Rev. Lett. 61, 2015 (1988).获奖代表性工作 D. J. Thouless, Mahito Kohmoto, M. P. Nightingale, and M. Den Nijs, Quantized Hall Conductance in a Two-Dimensional Peri
6、odic Potential, Phys. Rev. Lett. 49, 405 (1982). Qian Niu, D. J. Thouless, and Yong-Shi Wu, Quantized hall conductance as a topological invariant, Phys. Rev. B 31, 3372 (1985) .1951年9月14日出生于英国伦敦,1978年英国剑桥大学获博士学位,现普林斯顿大学的尤金希金斯教授, 在凝聚态物理诸多方面有基础性重要贡献。 英国皇家学会会员 美国物理学会会士 1993 美国物理学会 Oliver E. Buckley 奖 2
7、012 ICTP 狄拉克奖 Frederick Duncan Michael Haldane拉亭格液体量子自旋链分 量子霍尔 量子 拓扑 topology = topos + logy“ ” “ ”奖主 拓扑源于希 文genus 1genus 2genus 3genus 0拓扑 )1(4 gdAK Gauss-Bonnet 理Chern-Weil 理论 knj EcFiIEc0)(2det)( TrFic 21 M jj EcC )( )()()()2(!21 22 FFTrFTrFTric j-th Chern class: 2j-cohomology Gaussian curvature)(Euler 2 j-th Chern number拓扑和物理学有关 0qSdE electric charge? mqSdB magnetic monopole:物质态和拓扑学有关