医学统计学第二版高等教育出版社课后习题答案剖析.doc

上传人:坚持 文档编号:3452641 上传时间:2019-05-30 格式:DOC 页数:18 大小:75KB
下载 相关 举报
医学统计学第二版高等教育出版社课后习题答案剖析.doc_第1页
第1页 / 共18页
医学统计学第二版高等教育出版社课后习题答案剖析.doc_第2页
第2页 / 共18页
医学统计学第二版高等教育出版社课后习题答案剖析.doc_第3页
第3页 / 共18页
医学统计学第二版高等教育出版社课后习题答案剖析.doc_第4页
第4页 / 共18页
医学统计学第二版高等教育出版社课后习题答案剖析.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、第一章 绪论1.举例说明总体和样本的概念。研究人员通常需要了解和研究某一类个体,这个类就是总体。总体是根据研究目的所确定的所有同质观察单位某种观察值(即变量值)的集合,通常有无限总体和有限总体之分,前者指总体中的个体是无限的,如研究药物疗效,某病患者就是无限总体,后者指总体中的个体是有限的,它是指特定时间、空间中有限个研究个体。但是,研究整个总体一般并不实际,通常能研究的只是它的一部分,这个部分就是样本。例如在一项关于 2007 年西藏自治区正常成年男子的红细胞平均水平的调查研究中,该地 2007 年全部正常成年男子的红细胞数就构成一个总体,从此总体中随即抽取 2000 人,分别测的其红细胞数

2、,组成样本,其样本含量为 2000 人。2.简述误差的概念。误差泛指实测值与真实值之差,一般分为随机误差和非随机误差。随机误差是使重复观测获得的实际观测值往往无方向性地围绕着某一个数值左右波动的误差;非随机误差中最常见的为系统误差,系统误差也叫偏倚,是使实际观测值系统的偏离真实值的误差。3.举例说明参数和统计量的概念。某项研究通常想知道关于总体的某些数值特征,这些数值特征称为参数,如整个城市的高血压患病率。根据样本算得的某些数值特征称为统计量,如根据几百人的抽样调查数据所算得的样本人群高血压患病。统计量是研究人员能够知道的,而参数是他们想知道的。一般情况下,这些参数是难以测定的,仅能够根据样本

3、估计。显然,只有当样本代表了总体时,根据样本统计量估计的总体参数才是合理的。4.简述小概率事件原理。当某事件发生的概率小于或等于 0.05 时,统计学上习惯称该事件为小概率事件,其含义是该事件发生的可能性很小,进而认为它在一次抽样中不可能发生,这就是所谓的小概率事件原理,它是进行统计推断的重要基础。第二章 调查研究设计1.调查研究主要特点是什么?调查研究的主要特点是:研究的对象及其相关因素(包括研究因素和非研究因素)是客观存在的,不能人为给予干预措施不能用随机化分组来平衡混杂因素对调查结果的影响。2.简述调查设计的基本内容。明确调查目的和指标确定调查对象和观察单位确定调查方法确定调查方式确定调

4、查项目和调查表制定资料整理分析计划制定调查的组织计划。3.试比较常用的四种概率抽样方法的优缺点。(1)单纯随机抽样 优点是:均数(或率)及标准误的计算简便。缺点是:当总体观察单位数较多时,要对观察单位一一编号,比较麻烦,实际工作中有时难以办到。(2)系统抽样 优点是:易于理解,简便易行容易得到一个按比例分配的样本,由于样本相应的顺序号在总体中是均匀散布的,其抽样误差小于单纯随机抽样。缺点是:当总体的观察单位按顺序有周期趋势或单调递增(或递减)趋势,系统抽样将产生明显的偏性。但对于适合采用系统抽样的情形,一旦确定了抽样间隔,就必须严格遵守,不能随意更改,否则可能造成另外的系统误差实际工作中一般按

5、单纯随机抽样方法估计抽样误差,因此这样计算得到的抽样误差一般偏大。(3)分层抽样 优点是: 减少抽样误差:分层后增加了层内的同质性,因而观测值的变异度减小,各层的抽样误差减小,在样本含量先锋等的情况下其标准误一般小于单纯随机抽样、系统抽样和整群抽样的标准误便于对不同的层采用不同的抽样方法,有利于调查组织工作的实施还可对不同层进行独立分析。缺点是:当需要确定的分层数较多时,操作比较麻烦,实际工作中实施难度较大。(4)整群抽样 优点是:便于组织,节省经费,容易控制调查质量;缺点是:当样本含量一定时,其抽样误差一般大于单纯随机抽样的误差, 。4.常用的非概率抽样方法有哪些?有偶遇抽样、立意抽样、定额

6、抽样、雪球抽样等。5.简述调查问题的顺序安排。调查问题顺序安排总原则:符合逻辑一般问题在前,特殊问题在后易答题在前,难答题在后如果采用封闭式和开放式相结合的问题,一般先设置封闭式问题敏感问题一般放在最后。此外,在考虑问题顺序时,还应注意问题是否适合全部调查对象,并采用跳答的形式安排问题和给出指导语。第四章 定量资料的统计描述1.均数、中位数、几何均数的适用范围有何异同?相同点是都用于描述定量资料的集中趋势。不同点:均数用于单峰对称分布,特别是正态分布或近似正态分布的资料几何均数用于变量值间呈倍数关系的偏态分布资料,特别是变量经过对数变换后呈正态分布或近似正态分布的资料中位数用于不对称分布资料、

7、两端无确切值的资料以及分布不明确的资料。2.同一资料的标准差是否一定小于均数?同一资料的标准差不一定小于均数。均数描述的是一组同质定量变量的平均水平,而标准差是描述单峰对称分布资料离散程度最常用的指标。标准差大,表示观察值之间变异大,即一组观察值的分布较分散;标准差小。表示观察值之间变异小,即一组观察值的分布较集中。若标准差远大于均数表明数据离散程度较大,可能为偏态分布,此时应考虑改用其他指标来描述资料的集中趋势。3.极差、四分位数间距、标准差、变异系数的适用范围有何异同?相同点是都用于描述资料的离散程度。不同点:极差可用于描述单峰对称分布小样本资料的离散程度,或用于初步了解资料的变异程度四分

8、位数间距可用于描述偏态分布资料、两端无确切值或分布不明确的资料的离散程度标准差用于描述正态分布或近似正态分布资料的离散程度变异系数用于比较几组计量单位不同或均数相差悬殊的正态分布资料的离散程度。4.正态分布有哪些基本特征?正态曲线在横轴上方均数处最高正态分布以均数为中心,左右对称正态分布有两个参数,即位置参数 和形态参数 正态曲线下的面积分布有一定规律,正态曲线与横轴间的面积恒等于 1。曲线下区间(-1.96,+1.96)内的面积为 95.00%;区间(-2.58,+2.58)内的面积为 99.00%5.制定医学参考值范围时,正态分布法和百分位数法分别适用于何种资料?通过大量调查证实符合正态分

9、布的变量或近似正态分布的变量,可按正态分布曲线下面积的规律制定医学参考值范围,服从对数正态分布的变量,可对观察值取对数后按正态分布法算出医学参考值范围的对数值,然后求其反对数对于经正态性检验不服从正态分布的变量,应采用百分位数法制定医学参考值范围。第五章、定性资料的统计描述1.应用相对数时需要注意哪些问题?应有足够的观察单位数;不能以构成比代替率;计算观察单位数不等的及格率的合计率和平均率时,不能简单的把各组率相加求其平均值而得,而应该分别将分子和分母合计,再求出合计率和平均率;相对数的比较应注意其可比性,如果内部构成不同,应计算标准化率;样品率或样品构成比的比较应作检验假设。2.为什么不能以

10、构成比代替率?率是指某现象实际发生数和某时间点或某时间段可能发生该现象的观察单位总数之比,用以说明该现象发生的频率或强度。构成比是指事物内部某一组成部分观察单位数与同一事物各组成部分的观察单位总数之比,以说明事物内部各组成部分所占比重,不能说明某现象发生的频率或强度大小。3.标准化率计算的直接法和间接法的应用有何区别?如对死亡率的年龄构成标准化,当已知被标化组的年龄别死亡率时,宜采用直接法;当不知道被标化组的年龄别死亡率,只有年龄别人口数和死亡总数时,可采用间接法。4.常用动态数列分析指标有哪几种?各有何用途?绝对增长量、发展速度与增长速度、平均发展速度与平均增长速度。绝对增长量是指事物现象在

11、一定时期增长的绝对值;发展速度与增长速度都是相对比指标,用以说明事物现象在一定时期的速度变化;平均发展速度是指一定时期内个环比发展速度的平均值,用以说明事物在一定时期内逐年的平均发展速度;与平均增长速度是说明事物在一定时间内逐年的平均增长速度。5.率的标准化需要注意那些问题?仅用于相互间的比较,实际水平应采用未标化率来反映。样品的标化率是样品指标,存在抽样误差,若要比较其代表的总体标准化率是否相同,需作假设检验。注意直接法和间接法的选用。各年龄组若出现明显交叉,或呈非平行变化趋势时,不适合采用标准化法,宜分层比较各年龄组率。此外,对于因其他条件不同,而非内部构成不同引起的不可比性问题,标准化法

12、难以解决。第六章 总体均数的估计1、什么是均数的抽样误差?决定均数的抽样误差大小的因素有哪些?抽样研究中,由于同质总体中的个体间存在差异,即个体变异,因而从同一总体中随机抽取若干样本,样本均数往往不等于总体均数,且各样本均数之间也存在差异。这种由个体变异产生的、随机抽样引起的样本均数与总体均数间的差异称均数的抽样误差。决定均数抽样误差大小的因素主要为样本含量和标准差。2、样本均数的抽样分布有何特点?样本均数的抽样分布特点有:1、各样本均数未必等于总体均数;2、样本均数之间存在差异;3、样本均数服从正态分布;4、样本均数的变异范围较原变量的变异范围小;5、随着样本含量的增加,样本均数的变异范围逐

13、渐缩小。3、阐述标准差与标准误的区别与联系。标准差与标准误的区别在于:1、计算公式不同;2、统计学意义:标准差越小,说明个体值相对越集中,均数对数据的代表性越好;而标准误越小,说明样本均数的分布越集中,样本均数与总体均数的差别越小,抽样误差越小,由样本均数估计总体均数的可靠性越大;3、用途:标准差用于描述个体值的变异程度,标准误用于描述均数的抽样误差大小。标准差与标准误的联系:当样本量 n 一定时,标准误随标准差的增加而增加,公式为:看小抄。4、如何运用抽样分布规律估计总体均数?中心极限定理:从均数为 u,标准差为 的正态总体中进行独立随机抽样,其样本均数服从均数为 u,标准差为 /根号下 u

14、 的正态分布;即使是从非正态总体中进行独立随机抽样,当样本含量逐渐增加时(n 大于等于 50) ,其样本均数的分布近似于均数为 u,标准差为 /根号下 u 的正态分布。 x 越大,抽样误差越大,由样本均数估计总体均数的可靠性越小。反之,x 越小,抽样误差越小,由样本均数估计总体均数的可靠性越大。5、阐述总体均数的置信区间与医学参考值范围的区别。区别 均数的置信区间 医学参考值范围意义 按一定的置信度(1-a)估计的总体均数所在的区间范围大多数“正常人”的某项解剖、生理、生化指标的波动范围计算公式 1、 未知;2、未知而 n 较大;3、 已知1、正态分布法:双侧95%的参考值范围为()用途 用于

15、总体均数的估计或假设检验判断观察对象的某项指标正常与否,为临床诊断提供参考第七章 假设检验1、解释零假设与备择假设的含义。零假设又称无效假设或无差异假设,记为 H0,表示目前的差异是由抽样误差引起的;备择假设又称对立假设,记为 H1,表示目前的差异是因为比较的对象之间存在本质不同造成的。2、简述假设检验的基本步骤。假设检验的基本步骤如下:(1)建立检验假设,确定检验水准。 (2)计算检验统计量。 (3)确定 P 值,作出统计推断。3、比较单侧检验与双侧检验的区别。选用双侧检验还是单侧检验需要根据分析目的及专业知识确定。例如,在临床试验中,比较甲、乙两种治疗方法的疗效有无差异,目的只要求区分两方

16、法有无不同,无需区分何者为优,则应选用双侧检验。如果有充分的理由认为甲法疗效不比乙法差,此时应选用单侧检验。若从专业角度无法确定的情况下,一般应采用双侧检验。4、解释 I 型错误、II 型错误和检验效能,并说明它们之间的关系。拒绝实际成立的 H0 所犯的错误称为 I 型错误,记为 。不拒绝实际不成立的H0 所犯的错误称为 II 型错误,记为 。如果两个总体参数间确实存在差异,即 H1:0 成立,按照现有检验水准,使用假设检验方法能够发现这种差异(即拒绝 H0)的能力被称为检验效能,记为( 1-) 。三者的关系为:当样本量确定时, 与 成反比,与(1-)成正比。如果把 设置得很小,势必增加犯 I

17、I 型错误的概率,从而降低检验效能;反之,如果把重点放在减少 上,势必增加犯 I 型错误的概率,从而降低了置信度。要同时减小 和 ,只有通过增加样本含量来实现。5、简述假设检验与置信区间估计的联系。假设检验与置信区间估计的联系是:二者都属于统计推断的范畴,且统计推断结论是等价的。此外,置信区间在回答差别有无统计学意义的同时,还能提供一些假设检验不能提供的信息,并可以提示差别是否具有实际意义。因此,置信区间与假设检验的作用是相辅相成的,将两者结合起来,可以提供更为全面的统计推断信息。第八章 t 检验1、在 t 检验中,一般当 P0.05,则拒绝 H0,其理论根据是什么?理论根据是小概率时间和小概

18、率反证法。P 值表示 H0 成立时,出现等于及大于(或等于及小于)现有样本统计量的概率。P0.05 则表示在 H0 成立的前提下,得到现有样本统计量概率为小概率事件,所以拒绝 H0。2、配对 t 检验的应用条件是什么?配对 t 检验的应用条件是资料为配对设计,且数据差值服从正态分布。3、正态性检验时,如何确定检验水准 ?理论上讲 应取得大一些,如 0.10 或 0.20,目的是减少犯 II 型错误的概率;在实际应用中,常取 =0.10。4、变量变换的目的是什么?变量变换的目的在于使变换后的资料满足正态分布或方差齐性等条件,便于进一步的统计分析。第九章 方差分析1、方差分析的基本思想及其应用条件

19、是什么?方差分析的基本思想是把全部观察值的总变异按设计类型分解成两个或多个组成部分,然后将各部分的变异与随机误差进行比较,以判断各部分的变异是否具有统计学意义。应用条件:各样本是相互独立的随机样本,且服从正态分布,各样本的总体方差齐性。2、在完全随机设计方差分析中 SS 总、SS 组间、 SS 组内各表示什么含义?SS 总是各观察值与总均值之差的平方和,即总离均差平方和,表示总变异的大小;SS 组间表示组间变异,指各处理组均值大小的不同,是由处理因素和随机误差造成的;SS 组内表示组内变异,指同一处理组内部各观察值之间的变异,是由随机误差造成的。3、什么是交互效应?请举例说明。交互效应是指某一

20、因素的效应随另一因素不同水平的变化而变化,称这两个因素之间存在交互效应。例如:某实验研究 A、 B 两种药物在不同剂量情况下对某病的治疗效果,药物 A 在不同剂量时,B 药的效应不同,或者药物 B 在不同剂量时,A 药的效应不同,则 A、B 两药间存在交互效应。4、重复测量资料具有何种特点?重复测量资料中的处理因素在受试者间是随机分配的,受试者内的因素即时间因素是固定的,不能随机分配;重复测量资料各受试者内的数据彼此不独立,具有相关性,后一个时间点的数据可能受到前面数据的影响,而且时间点离的越近的数据相关性越高。5、为什么总的方差分析的结果为拒绝零假设时,若想进一步了解两两之间的差别需要进行多

21、重比较?方差分析中备择假设是多个总体均数不等或不全相等,拒绝原假设只说明多个总体均数总的来说差别有统计学意义,并不能说明任意两总体均数之间均有差别。因此,若希望进一步了解两两的差别,需进行多重比较。第十章、二项分布和 Poisson 分布1.Bernoulli 试验的适用条件答:1.每次试验只会发生两种互斥结果之一,即两种互斥结果的概率之和恒等于 1;2.在相同试验条件下,每次试验产生某种结果的概率固定不变;3.重复试验是互相独立的,即任何一次试验结果的出现不会影响其他试验结果出现的概率。2. Poisson 分布的性质答:1.总体均数 与总体方差相等;2.当 n 很大,而 很小,且 n= 为

22、常数时,Poisson 分布可看作是二项分布的极限分布;3.当 增大时,Poisson 分布渐近正太分布,一般而言 20 时,Poisson 分布资料可作为正态分布处理;4. Poisson 分布具备可加性; 5. 的大小决定了 Poisson 分布的图形特征。3.二项分布与 Poisson 分布的区别答:随机变量 X 服从二项分布,是指在 n 重 Bernoulli 试验中,发生某种结果的次数 X=0,1,2,n 的一种概率分布,其恰好发生 X 个阳性的概率为 P(X)=(公式) ,且总有概率总和=1. 而随机变量 X 服从 Poisson 分布,是指 X 满足取值范围为 0,1,2,n;相应的概率为 P(X)=e-x/X!,且总有概率总和=1 。在总体率 很小,而样本含量 n 趋向于无穷大时,二项分布近似于 Poisson 分布。因此 Poisson 分布可看作是二项分布的一种极限情况,可用来描述小概率事件的发生规律。4.二项分布、Poisson 分布和正态分布的联系

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 试题真题

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。