1、#*作者:聂文伟 Oscilloscope.Chinarohde-,“ScopeArt 先生”团队成员示波器探头是示波器使用过程中不可或缺的一部分,它主要是作为承载信号传输的链路,将待测信号完整可靠的传输至示波器,以进一步进行测量分析。很多工程师 很看重示波器的选择,却容易忽略对示波器探头的甄别。试想如果信号经过前端探头就已经失真,那再完美的示波器所测得的数据也会有误。所以正确了解探头性 能,有效规避探头使用误区对我们日常使用示波器来说至关重要!在绝大多数示波器测量环境下,我们都需要使用探头。示波器探头有很多种,内部原理构造迥异,使用方法也各不相同。本文主要给大家介绍示波器探头的种类及工作原理
2、,探头使用过程注意事项以及如何选择示波器探头。1 示波器探头种类及工作原理对于 DC直流或一般低频信号而言,示波器探头只是一个由特定阻抗 R所形成的一段传输线缆。而随着待测信号频率的增加和不规则性,示波器探头在测量过程中会引入寄生电容 C以及电感 L,寄生电容会衰减信号的高频成分,使信号的上升沿变缓。寄生电感则会与寄生电容一起构成谐振回路,使信号产生谐振现象。所有这些都会对我们测量信号的准确性带来挑战。图 1 探头电气特性示意图示波器探头按供电方式分可分为无源探头和有源探头。无源探头又分为无源低压、无源高压及低阻传输线探头等,有源探头又分为有源单端、有源差分、高压差分探头等。此外,在一些特殊应
3、用下,还会使用到电流探头(AC、DC)、近场探头、逻辑探头以及各类传感器(光、温度、振动)探头等。无源探头是最常用的一类电压探头,也是我们在购买示波器时标配赠送的探头。如图 2所示。#*图 2 无源探头示意图无源探头一般使用通用型 BNC接口与示波器相连,所以大多数厂家的无源探头可以在不同品牌的示波器上通用(某些厂家特殊接口标准的探头除外),但由于示波器一般无法自动识别其他品牌的探头类型,所以此时需要手动在示波器上设置探头衰减比,以保证示波器在测量时正确补偿探头带来的信号衰减。图 3所示为日常最为常见的一类无源探头原理示意图,它由输入阻抗 Rprobe、寄生电容 Cprobe、传输导线(一般
4、1至 1.5米左右)、可调补偿电容 Ccomp组成。此类无源探头一般输入阻抗为10M,衰减比因子为 10: 1。图 3无源探头原理图在使用此类探头时,示波器的输入阻抗会自动设置为高阻 1M。此时示波器 BNC通道输入点的电压Vscope与探头前端所探测的电压值 Vprobe的关系满足以下对应关系:Vprobe/Vscope = (9M + 1M) / 1M = 10 : 1由关系式可知,示波器得到的电压是探头探测到电压的十分之一,这也是无源探头 10:1 衰减因子的由来。无源探头具备高阻抗 10M,因此它对待测电路的负载效应(将在第二部分详述)很小,#*能覆盖一般低频频段(500MHz 以内)
5、,耐压能力强(300V-400Vrms),价格便宜,通用性好,所以得到广泛 使用。当无源探头的衰减因子为 100:1、1000:1 甚至更高时,此类探头一般归类为无源高压探头。由于其衰减比很大,因此能测量高压、超高压电信号。图 4 R&S RT-ZH10高压探头还有一类无源探头,其衰减比为 1:1,信号未经衰减直接经过探头传输至示波器,其耐压能力不及其它无源探头,但它具备测试小信号的优势。由于不像 10:1 衰减比探头那样信号需要示波器再放大 10倍显示,所以示波器内部噪声未放大,测量噪声更小,此类更适用于测试小信号或电源纹波噪声。图 5 R&S HZ-154 1:1/10:1可调衰减比无源探
6、头无源传输线探头是另一类特殊的无源探头,其特点是输入阻抗相对较低,一般为几百欧姆,支持带宽更高,可达数 GHz以上。图 6为输入阻抗为 500的 10:1 无源传输线探头原理图:#*图 6传输线探头原理图传输线探头具备低寄生电容,低输入阻抗的特性,一般用来测量高频信号。在使用传输线探头时应该注意将示波器输入阻抗设置为 50,以与传输线 50阻抗相匹配,传输线探头的典型应用为测量 50传输线上的电信号,通过 SMA-N等不同的转换接头,传输线探头也可用在频谱分析仪等其它测试设备上。图 7传输线探头的典型应用需要注意的是,由于传输线探头的低阻抗,它的负载效应会比较明显。因此,此类探头仅适用于与低输
7、出阻抗(几十至 100欧姆)的电路测试。对于更高输出阻抗的电路,我们可以选择使用高阻有源探头的方案,将在后续详述。#*图 8 R&S RT-ZZ80 8.0GHz无源传输线探头介绍完无源探头,我们接下来看看有源探头。顾名思义,有源探头区别于无源探头最大的特点是“有源”,即它需要提供电源才能工作。如今大多数有源探头都配备有特殊接口,通过与示波器连接从示波器获得电源,而不需要额外提供外置电源(某些型号除外)。下图所示为有源单端探头原理图:图 9 有源单端探头原理图有源单端探头一般具备高阻抗(1M 上下),低寄生电容。 其前端有一个高带宽的放大器,有源探头的供电主要用于此放大器。放大器驱动信号经过
8、50传输线到达示波器,示波器的输入阻抗需选择为 50作匹配。 由于其较低的寄生电容和 50 欧姆传输,有源单端探头可以提供比无源探头更高的带宽,因此主要应用在高频信号的测量领域。优点和缺点往往是并存的,有源单端探头亦是如此。能够测量更高带宽的信号是其优点,但由于需要集成有源放大器,因而其成本相对于无源探头来说更高,一个几 GHz 带宽的有源单端探头价格可达数万人民币。除此之外,由于高带宽放大器的信号输入范围十分有限,因而其动态范围有限,一般有源单端探头的动态范围仅在几伏范围之内,探头所能承受的最大电压也只有几十伏。相对于前面所说的无源传输线探头,有源单端探头同样可以应用在低阻抗高频率信号的测量
9、环境,且由于其输入阻抗相对于无源传输线探头更高,因此它的负载效应更小。不仅如此,R&S 有源单端探头还可以与 RT-ZA9(N 型转换接头,USB 供电)附件连接,进而用在射频信号源和频谱分析仪上,用来测试特 殊环境下的信号,如传统 50欧姆同轴线缆无法连接的探测点处,或者需要使用高阻探头探测待测点信号频谱时。#*图 10 R&S RT-ZS系列单端有源探头与 RT-ZA9 N型转换头相连除了有源单端探头之外,有源差分探头是另外一类重要的有源探头。我们可以从字面上来理解这两种探头的区别,有源单端的前端有两处连接点:信号点和地。有源差分顾名思义主要用来测试差分信号,探头前端有三处连接点:信号正、
10、信号负、地。图 11 有源单端探头前端(左)与有源差分探头前端(右)有源差分探头的原理图如下:图 12有源差分探头原理图#*与有源单端探头相比,其最大不同在于使用了差分放大器。有源差分探头同样具备低寄生电容和高带宽特性,所不同的是,有源差分探头具有高共模抑制比 (CMRR),对共模噪声的抑制能力比较强。有源差分探头主要用来测试差分信号,即测试两路信号(一般为相位相差 180度的正反信号)的相对电压差,与地无关。图 13差分信号测试原理示意图上图显示了用有源差分探头测试差分信号的原理,图中红色波形显示的为差分信号 Vin+,蓝色波形显示为差分信号 Vin-,二者幅度相同,相位相差 180 度。V
11、in+和 Vin-经由差分探头正、负探测点探测后经过差分放大器放大,然后传输至示波器,最后得到如图绿色差分波形。这里要介绍几个概念,以便大家能够更好的理解共模抑制比 CMRR。共模(Common Mode):差分信号两端具有相同幅度和相位的信号成分,用表达式表示为 Vcm =(Vin+ + Vin-)/2.由于理想的 Vin+、Vin-幅度相同,相位相反,所以二者相加应该为零。但在实际工作环境下,Vin+、Vin-上会叠加上噪声干扰 Vnoise。由于 Vin+、Vin-所处环境相同,因而在二者上叠加的噪声也往往相同,所以由 CM表达式可知:CM = Vnoise.差模(Differentia
12、l Mode):差分信号两端不同的信号成分,用表达式表示为 Vdm = Vin+ - Vin-.共模抑制(Common Mode Rejection):差分放大器对共模信号的抑制能力,即差分放大器的一项主要能力是对 Vnoise进行抑制消除。如果共模电压 Vcm经过差分放大器的 增益为 Acm,差模电压Vdm经过差分放大器的增益为 Adm,则我们可以用共模抑制比(Common Mode Rejection Ratio)即CMRR来表示共模抑制能力,其表达式为:#*CMRR = Adm / Acm举例如下图:差模信号 Vdm幅度为 1V,经过差分放大器后幅度为 2V,即 Adm = 2. 共模信
13、号 Vcm幅度为 4.5V,经过差分放大器后幅度抑制为 0.45V,即 Acm=0.1. 因此,CMRR = 2 / 0.1 = 20:1 = 26dB。图 14 差分信号测试举例对于理想的差分放大器而言,我们希望其完全抑制共模信号,从而消除噪声 Vnoise对差分信号测量的影响。对于一般的差分信号测量而言,20dB 的 CMRR已经足够,而 R&S RT-ZD40的 CMRR可达50dB,性能非常优异。图 15 R&S RT-ZD40有源差分探头值得一提的是,R&S 的有源单端探头和有源差分探头上都配备了 MicroButton多功能按钮和ProbeMeter探头计功能。其中,MicroBu
14、tton 是位于有源探头前段的一个微型按钮,用户可以在测试时很方便的按动按钮,从而执行对示波器的特定控制(可自定义),如:自动设置、默认设置、#*单次运行、连续运行等。图 16 MicroButton多功能按钮ProbeMeter则是集成在有源探头前端的 16位 DC电压计,可用来直接在探头点处测试直流电压,这与其他厂家使用探头捕获波形然后输送到示波器,进 而对波形进行测量得到 DC数值的方案完全不同。很显然,ProbeMeter 摒除了探头传输的失真影响,从而具备了 0.1%的高精准度。在使用差分探头 时,可以借助此功能方便快捷查看单端、共模、差模电压数值。图 17 ProbeMeter探头
15、电压计有源差分探头可用于绝大多数较小幅度差分信号的测量,但对于幅度达上百甚至上千幅的高压差分信号而言,有源查分探头就显得力不从心了。此时我们只能借助于高压差分探头的帮忙,相对于一般差分探头而言,高压差分探头具有更高的动态范围,能够承受更高的电压。#*图 18 R&S RT-ZD01 1400V 高压差分探头高压差分探头相对于无源高压探头而言价格昂贵,因此有用户在测试高压差分信号时会选择将示波器的电源接地线剪断,使示波器“浮起来”进行测试,这是非常危险的,一定要杜绝此类行为。我们将在第二部分详细说明。电流探头严格意义上说也属于有源探头的一种,几乎所有的电流探头在使用过程中都需要供电。电流探头主要分为三类:AC(仅能测试交流电)、DC(仅能测试直流电)、AC+DC。而目前大多数电流探头都具备了 AC+DC的测量功能。 电流探头的原理如下,主要是利用电磁效应(AC 测量)和霍尔效应(DC 测量)。图 19 AC+DC电流探头原理图