定量计算型选择题的常用解题方法.doc

上传人:gs****r 文档编号:3489528 上传时间:2019-05-31 格式:DOC 页数:6 大小:27.50KB
下载 相关 举报
定量计算型选择题的常用解题方法.doc_第1页
第1页 / 共6页
定量计算型选择题的常用解题方法.doc_第2页
第2页 / 共6页
定量计算型选择题的常用解题方法.doc_第3页
第3页 / 共6页
定量计算型选择题的常用解题方法.doc_第4页
第4页 / 共6页
定量计算型选择题的常用解题方法.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、1定量计算型选择题的常用解题方法1守恒法解题 守恒法就是以化学反应中存在的某些守恒关系(如质量守恒、元素守恒、得失电子守恒、能量守恒等)作为依据,寻求解题的突破口,列出相应的守恒关系式即可。比如根据溶液中阴阳离子所带的电荷总数相等、氧化还原反应中得失电子总数相等、或者对于若干个化学反应中的某种元素反应前后物质的量不变等进行求解。这种方法可以避开繁琐的过程,提高解题的速度,又可以避开多步计算,提高解题的准确度。希望考生在平时学习过程中有意识的加以运用。 例题 1:硫代硫酸钠可以作为脱硫剂使用。已知50mL0.1mol/LNa2S2O3 溶液恰好把 448mL(标况)Cl2 转化为 Cl-,则S2

2、O32-将转化为 A. S2-B. SC. SO32-D. SO42- 解析:该反应属于氧化还原反应,氧化剂得到的电子总数等于还原剂失去的电子总数,设 S 元素的最终化合价为 n,于是有=0.050.12(n-2)求出 n=6 答案选 D。 点评:一切物质的组成与转化均遵循着“守恒”规律,考生要整体把握并熟悉常见的守恒关系,如正与负、得与失、初态与终态等,根据题目中的具体条件,列出守恒关系式求解即可。 22关系式法解题 所谓关系式法就是对于两种或者两种以上物质之间发生化学反应时,其数量关系的正确表达。正确书写关系式是利用关系式法解决化学计算问题的前提,而正确寻求关系式又是正确书写的关键所在。寻

3、求关系式的常用方法有:1 从化学方程式中寻求关系式;2 从化学式中寻求关系式;3 从反应物或者生成物存在的差量中寻求关系式等等。 例题 2:将 CO 和 H2 的混合气体共 2.1g 与过量的 O2 混合后用电火花点燃充分反应,然后把燃烧混合物通过足量的过氧化钠固体,那么 Na2O2固体增加的质量是 A. 2.1gB. 3.4gC 1.8gD. 4g 解析:这种题目非常适合用关系式法来进行解答。根据题目中发生的那些反应来寻找关系式:12CO+O2 =2CO2;22H2+O2 =2H2O; 32CO2+2Na2O2 =2Na2CO3+O2; 42H2O+2Na2O2 =4NaOH+O2 将 1

4、和 3 相加后得到:CO+Na2O2 =Na2CO3 Na2O2 固体增加的质量就是 CO 的质量; 将 2 和 4 相加后得到:H2+Na2O2 =2NaOH Na2O2 固体增加的质量就是 H2 的质量。 综上: Na2O2 固体增加的质量就是 CO 和 H2 的混合气体原先的质量即 2.1g。答案选 A。 点评:对于多步反应来进行计算时,一般是先找出已知量和未知量之间的关系后,将多步计算简化为一步完成,注意适当利用方程式的叠3加或者某种元素的原子个数守恒关系,当然,前提是正确书写化学方程式。 3极端假设法解题 极端假设法又叫做极值法,是一种特殊的思维方法,就是把研究的对象或者问题,从原有

5、的范围缩小到较小的范围或者缩小到个别的一些极端情况来加以分析的方法。这种方法的使用可以把较难的题目变容易,把较繁琐的过程变简单,其特点是“抓两端,定中间” 。其基本思路为将混合物成分的含量以两种极端的情况考虑,由此推算判断反应的结果,从而缩小范围,简化计算过程。 例题 3.已知 Fe2O3 在高炉中有下列反应:Fe2O3CO=2FeOCO2,反应形成的固体混合物中(Fe2O3、FeO)铁元素和氧元素可以用 m(Fe):m(O)表示。上述固体混合物中 m(Fe):m(O)不可能是 A. 21:9B. 21:7.5C. 21:6D. 21:8 解析:固体混合物中 Fe2O3 和 FeO 可能为任意

6、比例,但混合物的组成量上有两个极端值:全部是 Fe2O3 或者全部是 FeO。当固体全部是Fe2O3 时,m(Fe):m(O)=(562):(163)=21:9;当固体全部是 FeO 时,m(Fe):m(O)=56:16=21:6。所以在固体混合物中有,答案选择 A、C。 点评:在很多情况下,分析混合物的极端值时应按照混合物的组成,把极大值和极小值分别求出,然后根据题目的具体情况,看所求未知量是介于大值与小值之间还是其他的情况,尤其要注意能否取等号等细节问题。 44十字交叉法 十字交叉法实际上是一种数学运算技巧,也是有关混合物计算中常用的方法之一。通过十字交叉,可以将某些本来需要列出一元二次方

7、程或者二元一次方程组求解的运算简化为算术运算,具有快速简洁之功效。但是,十字交叉法讲求对应关系,而且在某些情况下使用时可能会造成一些失误,希望考生在有十分把握的基础上来进行使用。 例题 4:已知 FeO 和 Fe2O3 在一定条件下受热熔化可以得到 Fe3O4,某同学想在实验室中用这两种铁的氧化物来做实验制备 Fe3O4,则这两种物质的物质的量之比应该为 A.1:1B.1:2C.1:3D.1:4 解析:对于混合物的计算往往可以用十字交叉法来进行。在 FeO 中;Fe2O3 中;Fe3O4 中;从而有 答案选 C。 点评:提醒同学们注意十字交叉法通常应用于下列几种情况:1 根据元素的相对原子质量

8、和同位素质量数,求同位素原子百分比;2 根据混合物的平均相对分子质量与组分的相对分子质量,求各组分的物质的量之比;3 根据混合物的平均化学式与组分化学式,求各组分的物质的量之比;4 根据溶液稀释或者浓缩或者混合前后的溶质质量分数(或者物质的量浓度) ,求原溶液与增减溶剂量或者浓、稀溶液的质量比,等等。 5讨论法 例题 5:将碱金属 R 的单质及其相应的氧化物 R2O 组成的混合物3g,加入足量水后充分反应,然后蒸干可以得到固体物质 4g,推测该碱5金属元素可能为 A.LiB.NaC.KD.Rb 解析:因单质 R 和氧化物 R2O 的质量都不知道,缺乏条件,无法直接求出 R 的相对原子质量,但是

9、可以根据其单质和氧化物与水反应后都生成 ROH 的性质来进行讨论解答。我们设 R 元素的相对原子质量为 M,且3g 物质都是 R,则有 RROH 求出 M51; 假设 3g 物质都是 R2O,则有 R2O2ROH 求出 M19 那么 R 元素的相对原子质量应该 51M19(由于是混合物,所以不能取等号) ,根据碱金属的相对原子质量可以选择 Na 或者 K(相对原子量分别为 23、39) 。答案选 BC。 点评:讨论法是由假设与验证相结合的思想引出的解题方法,其特点是“讨论” ,用此方法解题不仅要求学生理解一般的化学原理,而且需要学生运用数学、物理等相关学科的知识进行严密的逻辑推理和全面讨论。讨论型计算题融元素化合物知识、数理分析、逻辑推理于化学计算之中,思维容量很大,技巧性强,方法灵活。 当然,除了上面所讲的一些基本方法外,其他如差量法、平均值法、整体思维法等等也是很常用的解题方法。对于千变万化的化学试题,我们并不奢望考生能够解答所有的难题,但是提醒考生一定要建立解题的基本思维模式:题示信息基础知识逻辑思维准确回答。在这种思维模式中,认真审题,明确题目中的已知和所求,选择、调用自己知识6网络中的有用板块,使之分解、迁移、转化和重组,构建合理的思路,规范作答。 注:本文中所涉及到的图表、注解、公式等内容请以 PDF 格式阅读原文

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 学科论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。