中考必修知识点.doc

上传人:sk****8 文档编号:3522182 上传时间:2019-06-01 格式:DOC 页数:17 大小:108KB
下载 相关 举报
中考必修知识点.doc_第1页
第1页 / 共17页
中考必修知识点.doc_第2页
第2页 / 共17页
中考必修知识点.doc_第3页
第3页 / 共17页
中考必修知识点.doc_第4页
第4页 / 共17页
中考必修知识点.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、中小数理化 http:/ l有理数的概念 有理数。数轴。相反数。数的绝对值。有理数大小的比较。 具体要求: (1)了解有理数的意义,会用正数与负数表示相反意义的量,以及按要求把给出的有理数归类。 (2)了解数轴、相反数、绝对值等概念和数轴的画法,会用数轴上的点表示整数或分数(以刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。 (3)掌握有理数大小比较的法则,会用不等号连接两个或两个以上不同的有理数。 2。有理数的运算 有理数的加法与减法。代数和。加法运算律。有理数的乘法与除法。倒数。乘法运算律。有理数的乘方。有理数的混合运算。 科学记数法。近似数与有效数字。平方表与立方表。

2、 具体要求: (1)理解有理数的加、减、乘、除、乘方的意义,熟练掌握有理数的运算法则、运算律、运算顺序以及有理数的混合运算,灵活运用运算律简化运算。 (2)了解倒数概念,会求有理数的倒数。 (3)掌握大于 10 的有理数的科学记数法。 (4)了解近似数与有效数字的概念,会根据指定的精确度或有效数字的个数,用四舍五人法求有理数的近似数;会查平方表与立方表。 (5)了解有理数的加法与减法、乘法与除法可以相互转化。 (二)整式的加减 代数式。代数式的值。整式。 中小数理化 http:/ 去括号与添括号。数与整式相乘。整式的加减法。 具体要求: (1)掌握用字母表示有理数,了解用字母表示数是数学的一

3、大进步。 (2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的值。 (3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式接某个字母降幂排列或升幂排列。 (4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及整式的加减运算。 (5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方法和特殊与一般的辩证关系。 (三)一元一次方程 等式。等式的基本性质。方程和方程的解。解方程。 一元一次方程及其解法。 一元一次方程的应用。 具体要求: (1)了解等式和方程的有关概念,掌握等式的基本性质,会检验一

4、个数是不是某个一元方程的解。 (2)了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会对方程的解进行检验。 (3)能够找出简单应用题中的未知量和已知量,分析各量之间的关系,并能够寻找等量关系列出一元一次方程解简单的应用题,会根据应用题的实际意义,检查求得的结果是否合理。 中小数理化 http:/ 未知”可以转化为“已知” 的思想方法。 (四)二元一次方程组 二元一次方程及其解集。方程组和它的解。解方程组。 用代人(消元)法、加减(消元)法解二元一次方程组。三元一次方程组及其解法举例。 一次方程组的应用。 具体要求: (1)了解二元一次方程的概念,会把二元一次方程化为用一

5、个未知数的代数式表示另一个未知数的形式,会检查一对数值是不是某个二元一次方程的一个解。 (2)了解方程组和它的解、解方程组等概念;会检验一对数值是不是某个二元一次方程组的一个解。 (3)灵活运用代人法、加减法解二元一次方程组,并会解简单的三元一次方程组。 (4)能够列出二元、三元一次方程组解简单的应用题。 (5)通过解方程组,了解把“ 三元”转化为“二元” ,把“二元” 转化为“一元”的消元的思想方法,从而初步理解把“未知”转化为“已知” 和把复杂问题转化为简单问题的思想方法。 (五)一元一次不等式和一元一次不等式组 I一元一次不等式 不等式。不等式的基本性质。不等式的解集。一元一次不等式及其

6、解法。 具体要求: (l)了解不等式和一元一次不等式的概念,掌握不等式的基本性质,理解它们与等式基本性质的异同。 (2)了解不等式的解和解集概念,理解它们与方程的解的区别,会在数轴上表示不等式的解集。 (3)会用不等式的基本性质和移项法则解一元一次不等式。 2一元一次不等式组 中小数理化 http:/ 具体要求: (1)了解一元一次不等式组及其解集的概念,理解一元一次不等式组与一元一次不等式的区别和联系。 (2)掌握一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集。 (六)整式的乘除 l整式的乘法 同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘法。乘

7、法公式: (a 十 b)(a 一 b)=a2-b2 (ab)2=a22ab+b2 (ab)(a2ab+ b2)=a3b3 具体要求: (1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。 (2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算。 (3)灵活运用五个乘法公式进行运算(直接用公式不超过三次)。 (4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊一般一特殊”的认识规律。 2整式的除法 同底数幂的除法。单项式除以单项式。多项式除以单项式。 具体要求: 中小数理化 http:/ (2)掌握单项式除以单

8、项式、多项式除以单项式的法则,会用它们进行运算。 (3)会进行整式的加、减、乘、除、乘方的较简单的混合运算,灵活运用运算律与乘法公式使运算简便。 (七)因式分解 因式分解。提公因式法。运用(乘法)公式法。分组分解法。十字相乘法。多项式因式分解的一般步骤。 具体要求: (1)了解因式分解的意义及其与整式乘法的区别和联系,了 解因式分解的一般步骤。 (2)掌握提公因式法(字母的指数是数字)、运用公式法(直接用公式不超过两次)、分组分解法(分组后能直接提公因式或运用公式的多项式,无需拆项或添项)和十字相乘法(二次项系数与常数项的积为绝对值不大于 60 的整系数二次三项式)这四种分解因式的基本方法,会

9、用这些方法进行团式分解。 (八)分式 1分式 分式。分式的基本性质。约分。最简分式。 分式的乘除法。分式的乘方。 同分母的分式加减法。通分。异分母的分式加减法。 具体要求: (l)了解分式、有理式、最简分式、最简公分母的概念,掌握分式的基本性质,会熟练地进行约分和通分。 (2)掌握分式的加、减与乘、除、乘方的运算法则,会进行简单的分式运算。 2零指数与负整数指数 中小数理化 http:/ 具体要求: (l)了解零指数和负整数指数幂的意义;了解正整数指数幂的运算性质可以推广到整数指数幂,掌握整数指数幂的运算。 (2)会用科学记数法表示数。 (九)可他为一元一次方程的公式方程 含有字母系数的一元一

10、次方程。公式变形。 分式方程。增根。可化为一元一次方程的分式方程的解法与 应用。 具体要求: (1)掌握含有字母系数的一元一次方程的解法和简单的公式变形。 (2)了解分式方程的概念,掌握用两边同乘最简公分母的方法解可化为一元一次方程的分式方程(方程中的分式不超过三个);了解增根的概念,会检验一个数是不是分式方程的增根。 (3)能够列出可化为一元一次方程的分式方程解简单的应用题。 (十)数的开方 1平方根与立方根 平方根。算术平方根。平方根表。 立方根。立方根表。 具体要求: (1)了解平方根、算术平方根、立方根的概念,以及用根号表示数的平方根、算术平方根和立方根。 (2)了解开方与乘方互为逆运

11、算,会用平方运算求某些非负数的平方根和算术平方根,用立方运算求某些数的立方根。 中小数理化 http:/ 2实数 无理数。实数。 具体要求: ( 1)了解无理数与实数的概念,会把给出的实数按要求进行归类;了解实数的相反数、绝对值的意义,以及实数与数轴上的点一对应。 (2)了解有理数的运算律在实数运算中同样适用;会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算。 (3)结合我国古代数学家对。的研究,激励学生科学探求的精神和爱国主义的精神。 (十一)二次根式 二次根式。积与商的方根的运算性质。 二次根式的性质。 最简二次根式。同类二次根式。二次根式的加减。二次根式的乘法。二次根式

12、的除法。分母有理化。 具体要求: (1)了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。 (2)掌握积与商的方根的运算性质 会根据这两个性质熟练地化简二次根式(如无特别说明,根号内所有的字母都表示正数,并且不需要讨论). (3)掌握二次根式(不含双重根号 )的加、减、乘、除的运算法则,会用它们进行运算。 中小数理化 http:/ *(5)掌握二次根式的性质 会利用它化简二次根式 (十二)一元二次方程 1一元二次方程 一元二次方程。一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法。 一元二次方程的根的判别式。 *一元二次方程根与系数的关系。 二次三项

13、式的因式分解(公式法)。 一元二次方程的应用。 具体要求: (1)了解一元二次方程的概念,会用直接开平方法解形如 (x-a)2=b(b0)的方程,用配方法解数字系数的一元二次方程;掌握一元二次方程求根公式的推导,会用求根公式解一元二次方程;会用因式分解法解一元二次方程。灵活运用一元二次方程的四种解法求方程的根。 (2)理解一元二次方程的根的判别式,会根据根的判别式判断数字系数的一元二次方程的根的情况。 *(3)掌握一元二次方程根与系数的关系式,会用它们由已知一元二次方程的一个根求出另一个根与未知系数,会求一元二次方程两个根的倒数和与平方和。 (4)了解二次三项式的因式分解与解方程的关系,会利用

14、一元二次方程的求根公式在实数范围内将二次三项式分解因式。 (5)能够列出一元二次方程解应用题。 (6)结合教学内容进一步培养学生的思维能力,对学生进行辩证唯物主义观点的教育。 中小数理化 http:/ 可化为一元二次方程的分式方程。 * 可化为一元一次、一元二次方程的无理方程。 具体要求: (1)掌握可化为一元二次方程的分式方程(方程中的分式不超过三个)的解法,会用去分母或换元法求分式方程的解,并会验根。 (2)能够列出可化为一元二次方程的分式方程解应用题。 *(3)了解无理方程的概念,掌握可化为一元一次、一元一二次方程的无理方程(方程中含有未知数的二次根式不超过两个)的解法,会用两边平方或换

15、元法求无理方程的解,并会验根。 (4)通过可化为一元二次方程的分式方程、无理方程的教学,使学生进一步获得对事物可以转化的认识。 3简单的二元二次方程组 二元二次方程。二元二次方程组。 由一个二元一次方程和一个二元二次方程组成的方程组的解法。 * 由一个二元二次方程和一个可以分解为两个二元一次方程 的方程组成的方程组的解法。 具体要求: (l)了解二元二次方程、二元二次方程组的概念,掌握由一个二元一次方程和一个二元二次方程组成的方程组的解法,会用代人法求方程组的解。 *(2)掌握由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组的解法。 (3)通过解简单的二元二次方程组,使学生

16、进一步理解“消元”、“ 降次”的数学方法,获得对事物可以转化的进一步认识。 中小数理化 http:/ 1函数 平面直角坐标系。常量。变量。函数及其表示法。 具体要求: (l)理解平面直角坐标系的有关概念,并会正确地画出直角坐标系;理解平面内点的坐标的意义,会根据坐标确定点和由点求得坐标。了解平面内的点与有序实数对之间一对应。(2)了解常量、变量、函数的意义,会举出函数的实例,以及分辨常量与变量、自变量与函数。 (3)理解自变量的取值范围和函数值的意义,对解析式为只含有一个自变量的简单的整式、分式、二次根式的函数,会确定它们的自变量的取值范围和求它们的函数值。 (4)了解函数的三种表示法,会用描点法画出函数的图象。 (5)通过函数的教学,使学生体会事物是互相联系和有规律地变化着的,并向学生渗透数形结合的思想方法。 2正比例函数和反比例函数 正比例函数及其图象。反比例函数及其图象。 具体要求: (1)理解正比例函数、反比例函数的概念,能够根据问题中的条件确定正比例函数和反比例函数的解析式。 (2)理解正比例函数、反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减小而变化的情况。 (3)理解待定系数法。会用待定系数法求正、反比例函数的解析式。 3一次函数的图象和性质 一次函数。一次函数的图象和性质。 二元一次方程组的图象解法。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。