1、3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!本资料来源于 七彩教育网http:/热点专题八 能力型创新问题【考点聚焦】能力型创新问题已成为近年中考中较难题或压轴题的主要方向,主要有以下四种类型:【热点透视】热点 1:探索性问题探索是人类认识客观世界过程中最生动、最活跃的思维活动,探索性问题存在于一切学科领域之中,在数学中则更为普遍初中数学中的“探索发现”型试题是指命题中缺少一定的题设或未给出明确的结论,需要经过推断、补充并加以证明的命题,它不像传统的解答题或证明题,在条件和结论给出的情景
2、中只需进行由因导果或由果索因的工作,从而定格于“条件演绎结论”这样一个封闭的模式之中,而是必须利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或由结论去探索未给予的条件;或去探索存在的各种可能性以及发现所形成的客观规律例 1 (2008 荆门)将两块全等的含 角的三角尺如图 1 摆放在一起,设较短直角30边长为 1(1)四边形 ABCD 是平行四边形吗?说出你的结论和理由:_(2)如图 2,将 RtBCD 沿射线 BD 方向平移到 的位置,四边形1RtBCD是平行四边形吗?说出你的结论和理由:_1ABCD(3)在 RtBCD 沿射线 BD 方向平移的过程中,当点 B 的移
3、动距离为_时,四边形 为矩形,其理由是_;当点 B 的移动距离1为_时,四边形 为菱形,其理由是_ (图 3、图 4 用于探1ABCD究)解:(1)是,此时 平行且等于 CD,一组对边平行且相等的四边形是平行四边形(2)是,在平移过程中,始终保持 平行且等于 ,一组对边平行且相等的四AB1CD边形是平行四边形(3) ,此时 ,有一个角是直角的平行四边形是矩形 190C3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!,此时点 与点 重合, ,对角线互相垂直的平行四边形是菱形31B1ACD点评:
4、条件探索型结论明确,而需探索发现使结论成立的条件的题目例 2 (2008 郴州)如图 5,矩形纸片 的边长分别为 a、b( ) 将纸片B任意翻折(如图 6) ,折痕为 PQ (P 在 BC 上) ,使顶点 C 落在四边形 APCD 内一点 ,C的延长线交直线 AD 于 M,再将纸片的另一部分翻折,使 A 落在直线 PM 上一点 ,PC A且 所在直线与 PM 所在直线重合(如图 7)折痕为 MNA(1)猜想两折痕 之间的位置关系,并加以证明PQMN,(2)若 的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕C间的距离有何变化?请说明理由PQN,(3)若 的角度在每次翻折的过程中都为 (如
5、图 8) ,每次翻折后,非重叠45部分的四边形 ,及四边形 的周长与 a、b 有何关系,为什么?MCDBPAN解:(1) PQ四边形 是矩形, ,且 在 直线上,则有 ,ABC MADAMBC ,由翻折可得: ,12P, ,NMPQNP故 Q(2)两折痕 , 间的距离不变,N过 作 ,则 ,PHsinPMHA 的角度不变, 的角度也不变,CC则所有的 都是平行的3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!又 ,所有的 都是相等的,ADBC PM又 ,PHQ故 的长不变(3)当 时,45四
6、边形 是正方形,C四边形 是矩形QDM , ,a矩形 的周长为 C2同理可得矩形 的周长为 ,所以两个四边形的周长都为 ,与 无关BPAN 2ab点评:结论探索型给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论的题目例 3 (2008 岳阳)如图 10,抛物线 交233yxx 轴于 A、B 两点,交 y 轴于点 ,顶点为 D(1)求 A、B、C 的坐标(2)把ABC 绕 AB 的中点 M 旋转 ,得到四边形 AEBC:180求 E 点坐标试判断四边形 AEBC 的形状, 并说明理由(3)试探索:在直线 BC 上是否存在一点 P,使得PAD 的周长最小,若存在,请求出 P 点的坐标;
7、若不存在,请说明理由解:(1) ,233yx令 ,得 0x令 ,即 ,y2330x,20x , 123 三点的坐标分别为 , , ABC, , (30)A, (1)B, (03)C,(2) ;()E,四边形 是矩形3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!理由:四边形 是平行四边形,且 AEBC90ACB(3)存在 3107P,作出点 关于 的对称点 ,连结 与直线 交于点 D P则点 是使 周长最小的点 AD求得 , (32), 431,过 , 的直线为 ,A62yx过 的直线为 B
8、C, 3两直线的交点为 107P,点评:存在探索型在一定的条件下,需探索发现某种数学关系是否存在的题目热点 2:开放性问题开放性试题重在开发思维,促进创新,提高数学素养,所以是近几年中考试题的热点考题观察、实验、猜想、论证是科学思维方法,是新课标思维能力新添的内容,学习中应重视并应用例 4 (2008 福州)如图 11,直线 ,连结 ,直线 、 及线段ACBD ACBD把平面分成、四个部分,规定线上各点不属于任何部分当动点 落在AB P某个部分时,连结 ,构成 、 、 三个角 (提示:有公共端PAB, PP点的两条重合的射线所组成的角是 角 )0(1)当动点 落在第部分时,求证: ;PAPBC
9、PBD(2)当动点 落在第部分时, 是否成立(直接回答成立或不成立)?(3)当动点 在第部分时,全面探究 、 、 之间的关系,并写出动点 的具体位置和相应的结论选择其中一种结论加以证明解:(1)解法一:如图 12() 延长 交直线 于点 ,EA PEABD ,PEA3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网! APBCPBD解法二:如图 12(2) 过点 作 , F AF , , PBD C解法三:如图 12(3) , ,ACBD 180即 PPAB又 , ABC(2)不成立 (3) (
10、a)当动点 在射线 的右侧时,PBA结论是 DC(b)当动点 在射线 上,结论是 ,或PDACPB或 , (任写一个即可) PACB0(c)当动点 在射线 的左侧时,结论是 APB选择(a)证明:如图 12(4) ,连结 ,连结 交 于 M , D MCD又 , B选择(b)证明:如图 12(5) 点 在射线 上, PA0PB3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网! , ACBD PAC 或 或 ,BPBDA0PBP选择(c)证明:如图 12(6) 连结 ,连结 交 于 F , AC
11、BD PA , 点评:本题由点 的位置的改变,让同学们探究由此而引起的三个角之间的变化,将分类思想的考查融入在探索、猜想过程中热点 3:阅读理解型问题阅读理解题是近几年频频出现在中考试卷中的一类新题型,不仅考查学生的阅读能力,而且综合考查学生的数学意识和数学综合应用能力,尤其是侧重于考查学生的数学思维能力和创新意识,此类题目能够帮助考生实现从模仿到创造的思想过程,符合学生的认知规律,是中考的热点题目之一,今后的中考试题有进一步加强的趋势例 5 阅读:我们知道,在数轴上, 表示一个点而在平面直角坐标系中,1x表示一条直线;我们还知道,以二元一次方程 的所有解为坐标的点组1x 210y成的图形就是
12、一次函数 的图象,它也是一条直线,如图 13(1)可以得出:直线2y与直线 的交点 的坐标 就是方程组 的解 1x1xP(13), 2xy3xy在直角坐标系中, 表示一个平面区域,即直线 以及它左侧的部分,如图 113(2) ; 也表示一个平面区域,即直线 以及它下方的部分,如图y x13(3) 回答下列问题:在直角坐标系(13(3) )中,(1)用作图象的方法求出方程组 的解2xy(2)用阴影表示 所围成的区域20xy3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!解:(1)如图 14 所
13、示,在坐标系中分别作出直线 和直线 ,这两2x2yx条直线的交点是 (26)P,则 xy是方程组 的解 2x(2)如图 14 阴影所示点评:通过阅读本题所提供的材料,我们要明白两点:方程组的解与两直线交点坐标的关系;不等式组的解在坐标中区域的表示方法热点 4:方案设计型问题近年一些省市的中考数学题中涌现了立意活泼、设计新颖、富有创新意识、培养创新能力的题目这类命题综合考查阅读理解能力、分析推理能力、数据处理能力、文字概括能力、书面表达能力和动手能力等能与初中所学的重点知识进行联结例 6 (2008 茂名)已知甲、乙两辆汽车同时、同方向从同一地点 A 出发行驶(1)若甲车的速度是乙车的 2 倍,
14、甲车走了 90 千米后立即返回与乙车相遇,相遇时乙车走了 1 小时求甲、乙两车的速度;(2)假设甲、乙每辆车最多只能带 200 升汽油,每升汽油可以行驶 10 千米,途中不能再加油,但两车可以互相借用对方的油,若两车都必须沿原路返回到出发点 A,请你设计一种方案使甲车尽可能地远离出发点 A,并求出甲车一共行驶了多少千米?解:(1)设甲,乙两车速度分别是 x 千米/ 时和 y 千米/时,根据题意得: ,2190xyA解之得: 6y即甲、乙两车速度分别是 120 千米/时、60 千米/ 时(2)方案一:设甲汽车尽可能地远离出发点 A 行驶了 x 千米,乙汽车行驶了 y 千米,则 即 012xy 0
15、13x 0x即甲、乙一起行驶到离 A 点 500 千米处,然后甲向乙借油 50 升,乙不再前进,甲再前进 1 000 千米返回到乙停止处,再向乙借油 50 升,最后一同返回到 A 点,此时,甲车行驶了共 3 000 千米方案二:(画图法)如图:3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!此时,甲车行驶了 (千米) 502130方案三:先把乙车的油均分 4 份,每份 50 升当甲乙一同前往,用了 50 升时,甲向乙借油 50 升,乙停止不动,甲继续前行,当用了 100 升油后返回,到乙停处
16、又用了 100 升油,此时甲没有油了,再向乙借油 50 升,一同返回到 A 点此时,甲车行驶了 (千米) 2点评:此类题目往往要求所设计的问题中出现路程最短、运费最少、效率最高等词语,解题时常常与函数、方程联系在一起例 7 (2008 福州)为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案图案要求只能用圆弧在正方形内加以设计,使正方形和所画的圆弧构成的图案,既是轴对称图形又是中心对称图形种植花草部分用阴影表示请你在图15(3) 、图 15(4) 、图 15(5)中画出三种不同的的设计图案提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图 15(1)
17、 、图 15(2)只能算一种解:答案不惟一,如图 16:点评:几何图形的分割与设计在中考中经常出现,有时是根据面积相等来分割,有时是根据线段间的关系来分割,有时根据其它的某些条件来分割,做此类题一般用尺规作图【考题预测】1观察算式:;2;34;2159;7163eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!;2135795用代数式表示这个规律(n 为正整数): _9135(21)n2将图 17(1)所示的正六边形进行分割得到图 17(2) ,再将图 17(2)中最小的某一个正六边形按同样的方
18、式进行分割得到图 17(3) ,再将图 17(3)中最小的某一个正六边形按同样的方式进行分割,则第 n 个图形中,共有_个正六边形3如图 18,将边长为 1 的正方形 沿 x 轴正方向连续翻转 2 008 次,点 依次OAPBP落在点 的位置,则 的横坐标 _1234208P, , , , , 2082084如图 19,设抛物线 交 x 轴于 两点,顶点为 以 为2134yxAB, DBA直径作半圆,圆心为 ,半圆交 y 轴负半轴于 MC(1)求抛物线的对称轴;(2)将 绕圆心 顺时针旋转 ,得到 ,如图 20求点 的坐标;ACB 180P P(3)有一动点 在线段 上运动, 的周长在不断变化
19、时是否存在最小值?QABQCD若存在,求点 的坐标;若不存在,说明理由5青青商场经销甲、乙两种商品,甲种商品每件进价 15 元,售价 20 元;乙种商品每件进价 35 元,售价 45 元(1)若该商场同时购进甲、乙两种商品共 100 件恰好用去 2 700 元,求能购进甲、乙两种商品各多少件?3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!(2)该商场为使甲、乙两种商品共 100 件的总利润(利润售价进价)不少于 750元,且不超过 760 元,请你帮助该商场设计相应的进货方案;(3)在“五
20、一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额 优惠措施不超过 300 元 不优惠超过 300 元且不超过 400 元 售价打九折超过 400 元 售价打八折按上述优惠条件,若小王第一天只购买甲种商品一次性付款 200 元,第二天只购买乙种商品打折后一次性付款 324 元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)6已知一元二次方程 的两个根满足 ,且 a,b,c 分20axbc12x别是 的A,B,C 的对边若 ,求B 的度数小敏解得此题的正确答 a案“ ”后,思考以下问题,请你帮助解答120(1)若在原题中,将方程改为 ,要得到 ,而条件“230xbc120B”不变,那么对应条件中的 的值作怎样的改变?并说明理由ac12(2)若在原题中,将方程改为 (n 为正整数, ) ,要得到axcn,而条件“ ”不变,那么条件中的 的值应改为多少(不必说明理10Bc12x由)?