1、 12012 年金衢 12 校联考数学试卷(一)2012.03一、选择题(本题有 10 小题,每小题 3 分,共 30 分)1.计算 23 的结果是( )A1 B1 C5 D52.函数 中,自变量 x的取值范围是( )yxA. B. 0 C. 1x D. 1x3.下列运算中,结果正确的是( ) A. B. C. D. 2435xx22yx325364.如图,下列水平放置的几何体中,左视图不是矩形的是( )5. 抛物线 的顶点坐标是( )3)2(xyA (2,3) B (2,3) C (2,3) D (2,3)6.关于近似数 2.4103,下列说法正确的是( )A精确到十分位,有 2 个有效数字
2、 B. 精确到百位,有 4 个有效数字C. 精确到百位,有 2 个有效数字 D. 精确到十分位,有 4 个有效数字7. 在一次学校运动会上,参加男子跳高的 15 名运动员的成绩如下表:跳高成绩(m) 1.20 1.25 1.30 1.35 1.40 1.45跳高人数 1 3 2 3 5 1这些运动员跳高成绩的中位数和众数分别是( )A1.35,1.40 B1.40,1.35 C1.40,1.40 D3,58.如图,AB 和 CD 都是O 的直径, AOC=50,则C 的度数是( )A50 B30 C25 D209.正方形网格中,AOB 如图放置,则 cosAOB 的值为( ) A B C D
3、122323OA B第 9 题 A BDC第 8 题OA BC D第 10 题FAyBxCEDO210.直线 分别与 x 轴,y 轴交于点 C、D,与反比例函数 的图象交于点 A、B.过25yx 3yx点 A 作 AEy 轴与点 E,过点 B 作 BFx 轴与点 F,连结 EF,下列结论:ADBC; EFAB; 四边形 AEFC 是平行四边形; .其中正确的个数是 1 2 3 4 AODBCS( )A1 B2 C3 D4 二、填空题 (本题有 6 小题,每小题 4 分,共 24 分)11.因式分解:b 216 = . 12.如果点 P( )关于原点的对称点为(2,3) ,则 x+y= .yx,
4、13.不等式组 的整数解是 0114.小明的讲义夹里放了大小相同的试卷共 12 页,其中语文 4 页、数学 3 页、英语 5 页,他随机地从讲义夹中抽出 1 页,抽出的试卷恰好是数学试卷的概率为 . 15.某中学在校内安放了几个圆柱形饮水桶的木制支架(如图) ,若不计木条的厚度,其俯视图如图所示,已知 AD 垂直平分 BC,AD=BC=40cm,则圆柱形饮水桶的底面半径的最大值是 cm. 16. 如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在x轴,y 轴的正半轴上.OABC,D是BC上一点, ,AB=3, OAB=45,E,F分别是线段OA ,AB上124BDOA的两个动点,且
5、始终保持DEF=45,设OE=x ,AF=y,则y与x 的函数关系式为 ;如果AEF 是等腰三角形AEF沿EF对折得A EF与五边形OEFBC重叠部分的面积 .三、解答题 (本题有 8 小题,共 66 分,各小题都必须写出解答过程)17. (本题 6 分)计算: +2012 0|31|60sin2118(本题 6 分) 如图,梯形 ABCD 中, DCAB ,点 E 是 BC 的中点,连结 AE 并延长与 DC 的延长线相交于点 F,连结 BF,AC.求证:四边形 ABFC 是平行四边形; 第 15 题yE ABC DFxO第 16 题第 15 题D C FEA B319.(本题 6 分) 某
6、课桌生产厂家研究发现,倾斜 1224 的桌面有利于学生保持躯体自然姿势根据这一研究,厂家决定将水平桌面做成可调节角度的桌面新桌面的设计图如图 1,AB 可绕点 A 旋转,在点 C 处安装一根可旋转的支撑臂 CD,AC= 30cm (1)如图 2,当BAC=24时,CDAB,求支撑臂 CD 的长;(2)如图 3,当BAC=12时,求 AD 的长 (结果保留根号)(参考数据: sin240.40,cos240.91,tan240.46, sin120.20)20.(本题 8 分)下图是数值转换机的示意图,小明按照其对应关系画出了 y 与 x 的函数图象.(1)分别写出当 0x4 与 x4 时,y
7、与x 的函数关系式;(2)小明说:“所输出 y 的值为 3 时,输入 x 的值为 0 或 5.”你认为他说的对吗?试结合图象说明.21.(本题 8 分)“校园手机”现象越来越受到社会 的关注春节期间,小明随机调 查了城区若干名同学和家长对 中学生带手机现象的看法统 计整理并制作了如下的统计图:x4输入非负数 x 363 ( )2+k输出 yx4x4BAOPy图 1CBADCBAD图 2 图 3CBA4(1)这次的调查对象中,家长有 人;(2)图 中表示家长 “赞成”的圆心角的度数为 度;(3)开学后,甲、乙两所学校对各自学校所有学生带手机情况进行了统计,发现两校共有 384名学生带手机,且乙学
8、校带手机的学生数是甲学校带手机学生数的 ,求甲、乙两校中带手机的35学生数各有多少?22.(本题10分)如图,ABC 内接于半圆,AB 是直径,过 A 作直线 MN, MAC=ABC,D 是弧 AC 的中点,连接 BD 交 AC 于 G,过 D 作 DEAB 于 E,交 AC 于 F(1)求证:MN 是半圆的切线;(2)求证:FD=FG ;(3)若DFG 的面积为 4.5,且 DG=3,GC= 4,试求 BCG 的面积23.(本题 10 分)操作:小明准备制作棱长为 1cm 的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:纸片利用率= 100%纸 片 被 利 用 的 面 积纸 片 的 总
9、面 积发现:(1)方案一中的点 A、 B 恰好为该圆一直径的两个端点你认为小明的这个发现是否正确,请说明理由(2)小明通过计算,发现方案一中纸片的利用率仅约为 38.2%请帮忙计算方案二的利用率,并写出求解过程探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三) ,请直接写出方案三的利用率24.(本题 12 分)如图,已知抛物线 y=ax2+bx+c 经过 A(0,4),B(4,0),C(1,0)三点.过点 A 作垂直于 y 轴的直线 l. 在抛物线上有一动点P,过点 P 作直线 PQ 平行于 y 轴交直线 l 于点 Q .连结 AP.(1)求抛物线 y=ax2+bx+c 的解析式;说明:方案一图形中的圆过点A、 B、 C;方案二直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点说明:方案三中的每条边均过其中两个正方形的顶点ABC方案一方案三方案二5(2)是否存在点 P,使得以 A、P、Q 三点构成的三角形与AOC 相似.如果存在,请求出点 P的坐标,若不存在,请说明理由; (3)当点 P 位于抛物线 y=ax2+bx+c 的对称轴的右侧.若将APQ 沿 AP 对折,点 Q 的对应点为点M.求当点 M 落在坐标轴上时直线 AP 的解析式.