1、电子技术基础模拟部分,主讲 申春,1、电子系统与信号,电子系统:是由若干相互联接、相互作用的基本电路组成的具有特定功能的电路整体。,模拟信号:在时间上和幅值上均连续的信号。,信号:是信息的载体。自然界的各种物理量必须先经过传感器转换为电信号再送入电子系统中加以处理。例如:气候信息就包含温度、气压、风速等信号。,数字信号:时间和数值上都是离散的信号。,第一章 半导体二极管,1.1 半导体的基本知识,1.2 PN结的形成及特性,1.3 半导体二极管结构与特性,1.4 二极管基本电路及其分析方法,1.5 特殊二极管,1.1 半导体的基本知识 一、 半导体材料,在物理学中。根据材料的导电能力,可以将他
2、们划分导体、绝缘体和半导体。 典型的半导体是硅Si和锗Ge,它们都是4价元素。,在绝对温度T=0K时,所有的价电子都被共价键紧紧束缚在共价键中,不会成为自由电子,因此本征半导体的导电能力很弱,接近绝缘体。,二、 本征半导体,本征半导体化学成分纯净的半导体晶体。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。,这一现象称为本征激发,也称热激发。,当温度升高或受到光的照射时,束缚电子能量增高,有的电子可以挣脱原子核的束缚,而参与导电,成为自由电子。,自由电子,空穴,自由电子产生的同时,在其原来的共价键中就出现了一个空位,称为空穴。,可见本征激发同时产生电子空穴对。
3、外加能量越高(温度越高),产生的电子空穴对越多。,与本征激发相反的现象复合,在一定温度下,本征激发和复合同时进行,达到动态平衡。电子空穴对的浓度一定。,常温300K时:,电子空穴对,自由电子 带负电荷 电子流,空穴 带正电荷 空穴流,本征半导体的导电性取决于外加能量:温度变化,导电性变化;光照变化,导电性变化。,导电机制,二. 杂质半导体,在本征半导体中掺入某些微量杂质元素后的半导体称为杂质半导体。,1. N型半导体,在本征半导体中掺入五价杂质元素,例如磷,砷等,称为N型半导体。,N型半导体-电子型半导体,多余电子,磷原子,硅原子,多数载流子自由电子,少数载流子 空穴,施主离子,自由电子,电子
4、空穴对,在本征半导体中掺入三价杂质元素,如硼、镓等。,空穴,硼原子,硅原子,多数载流子 空穴,少数载流子自由电子,受主离子,空穴,电子空穴对,2. P型半导体,杂质半导体的示意图,多子电子,少子空穴,多子空穴,少子电子,少子浓度与温度有关,本征激发产生,多子浓度与温度无关,由掺杂杂质产生,1.2 PN结及其单向导电性,1 . 载流子的漂移和扩散,漂移:由于电场的作用导致载流子的运动,形成漂移电流,扩散:由于载流子的浓度差异,载流子由高浓度区域向低浓度区域扩散,形成扩散电流。,因多子浓度差,形成内电场,多子的扩散,空间电荷区,阻止多子扩散,促使少子漂移。,PN结合,空间电荷区,多子扩散电流,少子
5、漂移电流,耗尽层,2 . PN结的形成,动态平衡:,扩散电流 漂移电流,总电流0,3. PN结的单向导电性,(1) 加正向电压(正偏)电源正极接P区,负极接N区,外电场的方向与内电场方向相反。 外电场削弱内电场,耗尽层变窄,扩散运动漂移运动,多子扩散形成正向电流I F,(2) 加反向电压电源正极接N区,负极接P区,外电场的方向与内电场方向相同。 外电场加强内电场,耗尽层变宽,漂移运动扩散运动,少子漂移形成反向电流I R(10-8至10-14A),在一定的温度下,由本征激发产生的少子浓度是一定的,故IR基本上与外加反压的大小无关,所以称为反向饱和电流。但IR与温度有关。,PN结加正向电压时,具有
6、较大的正向扩散电流,呈现低电阻, PN结导通; PN结加反向电压时,具有很小的反向漂移电流,呈现高电阻, PN结截止。 由此可以得出结论:PN结具有单向导电性。,4. PN结的伏安特性曲线及表达式,根据理论推导,PN结的伏安特性曲线如图,正偏,IF(多子扩散),IR(少子漂移),反偏,反向饱和电流,反向击穿电压,反向击穿,热击穿烧坏PN结,电击穿可逆。分为雪崩击穿和齐纳击穿两种,根据理论分析:,u 为PN结两端的电压降,i 为流过PN结的电流,IS 为反向饱和电流,VT称为温度的电压当量,对于室温(相当T=300 K)则有VT=26 mV。,n为发射系数,值12之间,总结:1、半导体的基本知识
7、 本征半导体,本征激发,载流子(空穴、电子) P型半导体,N型半导体,多子,少子2、PN结的形成 载流子的漂移及扩散 PN结的形成 PN结的单向导电性 PN结的V-I 特性,1.3 半导体二极管,二极管 = PN结 + 管壳 + 引线,1 结构,符号,二极管按结构分两大类:,(1) 点接触型二极管,PN结面积小,结电容小,用于检波和变频等高频电路。但不能承受高的反向电压和大电流,(2) 面接触型二极管,PN结面积大,可以承受比较大的工作电流,反向击穿电压高,用于低频大电流整流电路。,1.3.2 二极管的 VI 特性,硅:0.5 V 锗: 0.1 V,(1) 正向特性,导通压降,(2) 反向特性
8、,死区电压,实验曲线,硅:0.7 V 锗:0.3V,3 二极管的主要参数,(1) 最大整流电流IF,二极管长期连续工作时,允许通过二极管的最大整流电流的平均值。,(2) 反向击穿电压UBR,二极管反向电流急剧增加时对应的反向电压值称为反向击穿电压UBR。,(3) 反向电流IR,在室温下,在规定的反向电压下的反向电流值。硅二极管的反向电流一般在纳安(nA)级;锗二极管在微安(A)级。,(4) 最高工作频率fM: 由于PN结存在结电容,当频率升高到一定值时,二极管失去单向导电性.,1.4 二极管的基本电路及分析方法,i,R,10V,E,1k,+,vD,一、简单二极管电路的图解分析方法,二、二极管的
9、简化模型分析方法,2.恒压降模型(串联电压源模型),U D 二极管的导通压降。硅管 0.7V;锗管 0.3V。,1.理想二极管模型,正偏,反偏,3.折线模型,uUth,U th 二极管的门坎电压。硅管 0.5V;锗管 0.1V。,rD=(0.7V-0.5V)/1mA=200W,uUth,4.小信号模型,如果信号在静态工作Q(v=VD,i=ID)附近工作,可以把与Q点处相切直线的斜率的倒数作用微变电阻rDrD= uD / iDVT/ID=26(mV)/ ID,例1:,测量值 0.932mA,理想二极管模型,恒压降模型,折线模型,二极管的近似分析计算,1.4.2 二极管应用的典型电路,1.限幅电路
10、:能把输出电压限制在一定幅值内的电路。,0,2.7V,uo,t,0,-4V,4V,ui,t,2.7V,采用恒压降模型UREF = 2V,2.整流电路:将交流电压转变成单向直流电压的电路,采用理想模型,+,+,-,-,vi,vo,0,vi,t,0,vi,t,3.开关电路: 利用二极管的单向导电性,可以接通或断开 电路。,vi1,vi2,vo,采用理想模型,该电路是“与”门电路。完成了“与”的逻辑关系,VCC+5V,例: 电路如图(a)所示,其输入电压vi1和vi2的波形如图(b)所示,设二极管为理想二极管。试画出输出电压vo的波形。,例:电路如图所示,设ui=10sint ,二极管使用恒压降模型
11、(0.7V),试画出输出电压uo的波形。,例:在0 t 10ms时间内,电路输入vi(t)波形如图所示。分别绘出以下两图电路的输出电压Vo(t)的波形。 设二极管是理想的。,1.5 特殊二极管,当稳压二极管工作在反向击穿状态下,工作电流IZ在Izmax和Izmin之间变化时,其两端电压近似为常数,稳定电压,稳压二极管是应用在反向击穿区的特殊二极管,正向同二极管,反偏电压UZ 反向击穿,【例1.4】由稳压管可以组成稳压限幅电路。(设稳压管导通时的管压降是0V),本章小结,1半导体材料中有两种载流子:电子和空穴。电子带负电,空穴带正电。在纯净半导体中掺入不同的杂质,可以得到N型半导体和P型半导体。
12、2采用一定的工艺措施,使P型和N型半导体结合在一起,就形成了PN结。PN结的基本特点是单向导电性。3二极管是由一个PN结构成的。其特性可以用伏安特性和一系列参数来描述。在研究二极管电路时,可根据不同情况,使用不同的二极管模型。,13.分析题中各二极管的工作状态(导通或截止),并求出输出电压,设二极管是理想的。,作业,习题1,2,4,5,9,10,13,15,17,14分析题图中各二极管的工作状态(导通或截止),并求出输出电压的值,15电路如下图,输入电压如题图(b),在0 t 5ms的时间周期内,给出输出电压的波形。用恒压降模型,管压降为0.7V。,17电路如题图所示,当vi1、vi2、vi3分别输入0V或5V电压时,求输出电压vo的值,用表格的形式给出。,20电路如题图1-6所示,DZ的稳压值等于5V,当输入电压为vi=15sint(V)的正弦波时,画出输出电压vo的波形,设稳压管导通时的压降等于0V。,