资源描述
5G 发展路线和关键技术,,,,,LTE FDD,UMB,802.16m,LTE-A FDD,UMB+,802.16e,,,,IMT = IMT-2000 + IMT-Advanced,HSPA+,HSPA,WCDMA,DO Rev B,DO
Rev 0,cdma20001X,,,,,,,GSM,,GPRS/EDGE,IS-95
cdmaOne,,,,,,,注:,彼此兼容,DO Rev A,TD-LTE,TD-LTE-A,,TD-HSPA+,TD-HSPA,TD-SCDMA,,,,,FDD,TDD,3GPP,IEEE
802.16,,,,,,,,,,,,,LTE-Advanced,WirelessMAN-Advanced,,后续演进标准化已停止,CDG 大力发展CDMA 与LTE互操作标准,以确保向LTE平滑演进,移动通信标准演进,3GPP LTE标准版本演进,3,,2005.03,2006.09,2009.03,2010.03,2008.03,2012.12,2009.12,2011.03,2012.09,2014.09,,LTE,,Rel-8/9,,Rel-10/11,,Rel-12/13,,Rel-14/15,LTE-A,4G,5G,4.5G?,2005~2010,2008~2012,2012~2016,2016~2020,LTE-Hi的标准化和应用,4,TD-LTE宏蜂窝网定位,,,,,,LTE-Hi为LTE打造多层次、多频段、全覆盖的移动宽带网络,,,,,Hotspot and Indoor
Higher frequency
Higher bandwidth
Higher performance,LTE-V研究与标准推动,5,,传统 ITS技术,匝道信号控制,出行信息系统,交通管控中心,Research,当前 ITS 方案,ITS前沿技术
车路协同,综合汽车安全系统IVBSS,出行辅助系统MSAA,一体化运输走廊管理系统ICM,智能驾驶,电子认证收费,,研究热点,车路协同是未来ITS的核心,利用LTE -V支持V2X道路安全类应用:技术和产业基础,ITS(Intelligent Transport System):智能交通系统,6,LTE-U 主要是解决当前网络速率、容量跟用户设备对需求的矛盾,方案就是用3gpp的LTE-A 载波聚合( Carrier Aggregation )方案,载波聚合的需求就是频谱,而授权的频谱不够用怎么办,那就用未授权的,所以在R13中提出了这个解决方案,即使用授权的频谱作为主载波,使用非授权的5G频谱做为辅载波,达到载波聚合的效果,从而实现速率和容量的提升。,LTE-M 主要是针对物联网提出的另外一个解决方案,在 R12 提出,并会在 R13 中进一步完善,即采用LTE的频谱,降低系统的复杂度,以适用于物联网的低功耗、高延时、低性能等特点。,LTE-U (LTE-Unlicensed) 和 LTE-M(LTE-Machine to Machine)是3gpp针对现在面临的两个问题提出的两个解决方案,LTE-U(免许可频谱LTE),7,,利用免许可频谱(unlicensed spectrum)传送LTE
Always accompanied by a licensed carrier
Carrier Aggregation / Supplemental Downlink
Dual Connectivity in the future
主载波总是使用许可频谱
FDD or TDD
Control signalling, mobility, user data
副载波使用非许可频谱
Best-effort user data in DL,
and potentially UL,目前在3GPP提出的非授权LTE主要针对运营商市场,讨论集中于载波聚合授权频谱和非授权频谱的方案,非授权频谱不独立工作,仅负责容量提升。,LTE应用场景扩展,8,D2D设备直通,低成本机器通信设备,资源分配;物理信道设计;同步信号;协议栈架构,LTE-M,移动通信与计算技术的代际演进,9,移动通信跨代演进,大数据
众连接
场景体验,个人电脑
时代
始于 1980s,桌面互联网
时代
始于 1990s,移动互联网
时代
始于 2000s,可穿戴计算
时代
始于 2014+,计算技术跨代演进,移动互联网和物联网是5G发展的主要驱动力,移动互联网和物联网在面向2025年最具商业影响力的技术中排名第一和第三,综合爱立信、Cisco、GSMA等多家公司结果,预测2020年全球将有250亿联网设备,10,移动互联网,物联网,,,身临其境,云,无处不在,万物互联,ITU:,麦肯锡:,5G的应用场景与能力需求,11,ITU 5G:3类场景
增强移动宽带(EMBB): 体验速率,峰值速率,频谱效率,流量密度
大容量物联网(Massive MTC):连接数目,低成本,设备功耗
低时延高可靠通信(Critical MTC): 时延, 可靠性
其中,增强移动宽带场景分为广域覆盖和热点覆盖,METIS:3个场景,IMT-2020: 2类业务4个场景,,5G需求研究,12,Data rate vs Mobility,蜘蛛网系列,车头系列,韩国,韩国,日本,中国,爱立信,韩国,5G需求指标建议,13,,,,5G,数据,连接,用户体验,关键需求1:
1000倍流量,
密度10Tbps/Km2,关键需求2:
1000亿连接,
密度100万/Km2,关键需求3:
10Gbps峰值速率,100M/1Gbps用户体验,ms 级端到端时延,99.999%可靠性,1/1000比特成本,1/1000功耗,多种场景, 多组指标,14,Ref: ITU-R M.[IMT.vision],ITU 5G技术指标,5G的技术路线和主要判断,15,重要观点:
1:5G = 新空口 与 LTE演进, LTE演进低频段为主,长期存在;
2:新空口包括高频段与低频段,低频段新空口具有更优的设计和性能。
3:TDD与FDD高度融合,TDD会扮演重要角色。
4:新空口技术尽量统一,多场景多频段需求,可能是一个集合(RITs)
5:各种接入技术融合为统一开放灵活的网络,服务与整个社会的信息化,,,,,5G标准化时间窗:2016-2020,关键技术研究:2012-2019,举行5G Workshop,明确潜在频段
(<6GHz),完成规范(功能冻结),明确潜在频段
(>6GHz),16,,5G标准化主要工作将于2020年完成,,,,,,17,5G概念:一组核心技术,,,,,,5G核心技术:
大规模天线+新型多址接入技术提升频谱效率,构成确保“任何时间、任何地点”确保用户体验的关键技术
超密集+高频段提升热点流量和传输速率,基于LTE-Hi演进技术的能力提升
低时延高可靠技术拓展业务应用范围,为5G物联网场景应用的关键使能技术,5G主要应用场景及关键技术,18,宏覆盖增强,超密集组网,M2M增强,低时延高可靠通信场景,D2D场景,典型应用场景,关键技术,,,大规模天线,非正交传输,高频段通信,全双工,超密集组网,先进编码调制,灵活双工,FBMC,. . .,高频段通信,时延,室外用户体验速率提升至100Mbps,热点地区用户体验速率提升至1Gbps,空口:1ms
端到端:毫秒级,连接密度提升10~100倍,连接总量提升10-100倍,用户体验速率,连接密度/连接能力,全球共识的5G基本能力,,,,More Scenarios, More Parameters,19,Ref: ITU-R M.[IMT.vision],ITU 5G KPIs,,,,,,,,1GHz,3GHz,6GHz,10GHz,30GHz,100GHz,WRC15,WRC19,450MHz,WRC12&before,20,5G Spectrum,5G supports wide range spectrum access,User Centric Network Structure with 3 Services Centers
Localized Management & Transmission, Light Network Controlling
Flexible and Intelligent Network: Backhaul, UE Capability, Network Topology,21,5G Network Structure,User-Centric Network Structure,LTE Evolution,5G New RAT,Both FDD and TDD RIT will be enhanced towards 5G requirements,FDD and TDD have their own particular advantages.
FDD and TDD will be tightly integrated.,,FDD Priority Features,TDD Priority Features,,5G,,FDD,TDD,,22,TDD & FDD in 5G,,Channel Reciprocity,Dynamic TDD,Higher Spectrum
Wider Bandwidth
Sharing Bandwidth,Massive MIMO
Massive BF,UL and DL imbalance,Easy Duplexer,,Flexible Networking,Heterogeneous
D2D, MESH, Relay,TDD Priority,Future Trends,Key Technologies,Massive MIMO
UDN
mmwave
PDMA
Low delay high reliability
Flexible spectrum sharing
D2D
……,,Antenna,,Traffic,,Spectrum,,Network,,,,,23,Flexible Spectrum Usage,5G Key Technologies with TDD Priority,TDD will play an important role in 5G,,,24,,,,Concentrated macro cell,Wireless backhaul,Indoor/outdoor hotspot,High-rise,Deployment scenarios for Massive MIMO,,5G Key Technologies with TDD Priority (1)Massive MIMO,Massive MIMO is the most important technology in LTE evolution and
5G new RAT to increase spectrum efficiency.,,,,,Throughput relative to 2Tx case,Cell average,Edge UE,Massive MIMO results in significant gain in cell average & edge spectrum efficiency.
Higher gain can be achieved for TDD system, taking the advantage of channel reciprocity.,3D-UMi,3D-UMa,Codebook based extension,TDD vs. FDD,25,5G Key Technologies with TDD Priority (1)Massive MIMO,Deployment scenarios for ultra dense network,,Dynamic TDD,26,5G Key Technologies with TDD Priority (2)Ultra Dense Network (UDN),UDN is the most efficient way to enhance area throughput.,,,27,Interference coordination & interference management,Joint networking with
high & low frequency,Enhanced Relay networking,RRM on high frequency,5G Key Technologies with TDD Priority (3) mmWave Communication,mmWave communication is targeted for very high data rate(Gbps) and area throughput(10Tbps/km2)in hotspot area.
TDD is the dominant duplex mode for mmWave communication.,27,,,28,28,Other Key Technologies (1)Pattern Division Multiple Access (PDMA),PDMA is an important technology for spectrum efficiency enhancement and system capacity promotion.,29,Low delay network,Low delay frame structure,Other Key Technologies (2)Low Delay High Reliability,LTE-V is TD-LTE based technology for vehicular communication solution.,30,Other Key Technologies (3)
Flexible Spectrum Sharing,Flexible spectrum sharing is an important technology for optimal spectrum use.,
展开阅读全文
相关搜索