高中数学重难点总结(强烈推荐).doc.doc

上传人:11****ws 文档编号:3644848 上传时间:2019-07-02 格式:DOC 页数:74 大小:4.73MB
下载 相关 举报
高中数学重难点总结(强烈推荐).doc.doc_第1页
第1页 / 共74页
高中数学重难点总结(强烈推荐).doc.doc_第2页
第2页 / 共74页
高中数学重难点总结(强烈推荐).doc.doc_第3页
第3页 / 共74页
高中数学重难点总结(强烈推荐).doc.doc_第4页
第4页 / 共74页
高中数学重难点总结(强烈推荐).doc.doc_第5页
第5页 / 共74页
点击查看更多>>
资源描述

1、 曲靖学而通黄冈教育 从心而悟,由学而通!1高中数学必修+选修知识点归纳前言1.课程内容:必修课程由 5 个模块组成:必修 1:集合、函数概念与基本初等函数(指、对、幂 函数)必修 2:立体几何初步、平面解析几何初步。必修 3:算法初步、统计、概率。必修 4:基本初等函数(三角函数)、平面向量、三角恒等变换。必修 5:解三角形、数列、不等式。以上是每一个高中学生所必须学习的。上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基 础的同时, 进一步强调了 这些知识的发生、 发展过程和实际应

2、用,而不在技巧与 难度上做过高的要求。此外,基础内容还增加了向量、算法、概率、统计等内容。选修课程有 4 个系列:系列 1:由 2 个模块组成。选修 11:常用逻辑用语、圆锥曲线与方程、 导数及其应用。选修 12:统计案例、推理与证明、数系的 扩充与复数、框图系列 2:由 3 个模块组成。选修 21:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。选修 22:导数及其应用,推理与证明、数系的 扩充与复数选修 23:计数原理、随机变量及其分布列, 统计案例。系列 3:由 6 个专题组成。选修 31:数学史选讲。选修 32:信息安全与密码。选修 33:球面上的几何。选修 34:对称与群。选修 3

3、5:欧拉公式与闭曲面分类。选修 36:三等分角与数域扩充。系列 4:由 10 个专题组成。选修 41:几何证明选讲。选修 42:矩阵与变换。选修 43:数列与差分。选修 44:坐标系与参数方程。选修 45:不等式选讲。曲靖学而通黄冈教育 从心而悟,由学而通!2选修 46:初等数论初步。选修 47:优选法与试验设计初步。选修 48:统筹法与图论初步。选修 49:风险与决策。选修 410:开关电路与布尔代数。2重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:集合与简易逻辑:集合的概念与运算、 简易逻辑、充要条件函数:映射与函数、函数解析

4、式与定义域、 值域与最值、反函数、三大性 质、函数图象、指数与指数函数、对数与对数函数、函数的应用 数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性质、三角函数的应用平面向量:有关概念与初等运算、坐标运算、数量积及其应用不等式:概念与性质、均值不等式、不等式的 证明、不等式的解法、绝对值不等式、不等式的应用直线和圆的方程:直线的方程、两直线的位置关系、线性规划、 圆、直线与圆的位置关系圆锥曲线方程:椭圆、双曲线、抛物 线、直线与圆锥 曲线的位置关系、轨迹问题、圆锥曲线的应用直线、平面

5、、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量排列、组合和概率:排列、组合应用题、二项式定理及其 应用概率与统计:概率、分布列、期望、方差、抽样、正态分布导数:导数的概念、求导、 导数的应用复数:复数的概念与运算曲靖学而通黄冈教育 从心而悟,由学而通!3必修 1 数学知识点第一章:集合与函数概念1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。2、 只要构成两个集合的元素是一样的,就称这两个集合相等。3、 常见集合:正整数集合: 或 ,整数集合: ,有理数集合: ,实*NZQ数集合: .R4、集合的表示方法

6、:列举法、描述法 .1.1.2、集合间的基本关系1、 一般地,对于两个集合 A、B,如果集合 A 中任意一个元素都是集合 B 中的元素,则称集合 A 是集合 B 的子集。记作 .B2、 如果集合 ,但存在元素 ,且 ,则称集合 A 是集合 B 的x真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作: .并规定:空集合是任何集合的子集.4、 如果集合 A 中含有 n 个元素,则集合 A 有 个子集, 个真子集.n21n1.1.3、集合间的基本运算1、 一般地,由所有属于集合 A 或集合 B 的元素组成的集合,称为集合 A 与 B 的并集.记作: .B2、 一般地,由属于集合 A 且属

7、于集合 B 的所有元素组成的集合,称为 A 与 B 的交集.记作: .3、全集、补集 |,UCxU且1.2.1、函数的概念1、 设 A、B 是非空的数集,如果按照某种确定的对应关系 ,使对于集合 A 中f的任意一个数 ,在集合 B 中都有惟一确定的数 和它对应,那么就称xx为集合 A 到集合 B 的一个函数,记作: .f: y,2、 一个函数的构成要素为:定义域、 对应关系、 值域.如果两个函数的定义域相8课时曲靖学而通黄冈教育 从心而悟,由学而通!4同,并且对应关系完全一致,则称这两个函数相等.1.2.2、函数的表示法1、 函数的三种表示方法:解析法、 图象法、列表法 .1.3.1、单调性与

8、最大(小)值1、注意函数单调性的证明方法:(1)定义法:设 那么2121,xbax、上是增函数;)(0)(ffxf 在上是减函数.,1在步骤:取值作差变形定号判断格式:解:设 且 ,则: =bax,2121x21xff(2)导数法:设函数 在某个区间内可导,若 ,则 为增函)(fy0)()(f数;若 ,则 为减函数.0)(f1.3.2、奇偶性1、 一般地,如果对于函数 的定义域内任意一个 ,都有 ,xf xxff那么就称函数 为偶函数.偶函数图象关于 轴对称.f y2、 一般地,如果对于函数 的定义域内任意一个 ,都有 ,xf xxff那么就称函数 为奇函数.奇函数图象关于原点对称.f知识链接

9、:函数与导数1、函数 在点 处的导数的几何意义:)(xfy0函数 在点 处的导数是曲线 在 处的切线的斜)(xfy)(,0xfP率 ,相应的切线方程是 .)(0f 002、几种常见函数的导数 ; ; ; C1)(nnxxcos)(sin;xsi)(co ; ; ;axln xe)( axaln1)(lg1)(l3、导数的运算法则(1) . uv(2) . ()(3) .2(0)曲靖学而通黄冈教育 从心而悟,由学而通!54、复合函数求导法则复合函数 的导数和函数 的导数间的关系为()yfgx(),()yfugx,即 对 的导数等于 对 的导数与 对 的导数的乘积.xuxy解题步骤:分层层层求导

10、作积还原.5、函数的极值(1)极值定义:极值是在 附近所有的点,都有 ,则 是函数 的极大0x)(xf)0f)(0xf)(xf值;极值是在 附近所有的点,都有 ,则 是函数 的极小0 )(f)0f)(0f)(f值.(2)判别方法:如果在 附近的左侧 0,右侧 0,那么 是极大值;0x)(xf )(xf )(0xf如果在 附近的左侧 0,右侧 0,那么 是极小值.fff6、求函数的最值(1)求 在 内的极值(极大或者极小值)()yfx,ab(2)将 的各极值点与 比较,其中最大的一个为最大值,最(),fb小的一个为极小值。注:极值是在局部对函数值进行比较(局部性质) ;最值是在整体区间上对函数值

11、进行比较(整体性质 )。曲靖学而通黄冈教育 从心而悟,由学而通!6第二章:基本初等函数2.1.1、指数与指数幂的运算1、 一般地,如果 ,那么 叫做 的 次方根。其中 .axnxanNn,12、 当 为奇数时, ;当 为偶数时, .nn3、 我们规定: mna;1,0*N ;1an4、 运算性质: ;Qsrsrsr,0 ;arsr , .rbbrr2.1.2、指数函数及其性质1、记住图象: 1,0ayx2、性质: 1a10a图象654321-1-4 -2 2 4 60654321-1-4 -2 2 4 60(1)定义域:R(2)值域:(0,+)(3)过定点(0,1) ,即 x=0 时,y=1(

12、4)在 R 上是增函数 (4)在 R 上是减函数性质(5) ;,1xa(5) ;0,1xax6课时011y=axoy x曲靖学而通黄冈教育 从心而悟,由学而通!72.2.1、对数与对数运算1、指数与对数互化式: ;logxaaN2、对数恒等式: .loga3、基本性质: , .011la4、运算性质:当 时:0,NMa ;Nalogllog ;aaalll .Mnaalogl5、换底公式: bcall.0,1,0ca6、重要公式: loglnmaa7、倒数关系: .bll1,0,b2.2.2、对数函数及其性质1、记住图象: 1,0logaxya2、性质: 1a10a图象32.521.510.5

13、-0.5-1-1.5-2-2.5-1 1 2 3 4 5 6 7 832.521.510.5-0.5-1-1.5-2-2.5-1 1 2 3 4 5 6 7 8(1)定义域:(0,+)(2)值域:R(3)过定点(1,0) ,即 x=1 时,y=0(4)在 (0,+)上是增函数 (4)在(0,+)上是减函数性质(5) ;log,xa(5) ;0log,1xa011y=logaxoyx曲靖学而通黄冈教育 从心而悟,由学而通!82.3、幂函数1、几种幂函数的图象:第三章:函数的应用3.1.1、方程的根与函数的零点1、方程 有实根0xf函数 的图象与 轴有交点fyx函数 有零点.2、 零点存在性定理:

14、如果函数 在区间 上的图象是连续不断的一条曲线,并且有xfyba,,那么函数 在区间 内有零点,即存在 ,0baf xfyba, bac,使得 ,这个 也就是方程 的根.cc03.1.2、用二分法求方程的近似解曲靖学而通黄冈教育 从心而悟,由学而通!91、掌握二分法.3.2.1、几类不同增长的函数模型3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.必修 2 数学知识点曲靖学而通黄冈教育 从心而悟,由学而通!10第一章:空间几何体1、空间几何体的结构常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。2、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。3、空间几何体的表面积与体积圆柱侧面积; lrS2侧 面圆锥侧面积: lrS侧 面圆台侧面积: lRlrS侧 面体积公式:; ;hV柱 体 h31锥 体SS下下上上台 体 31球的表面积和体积:.3244R球球 , 2课时

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。